« Lune » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
nettoyages
Ligne 263 : Ligne 263 :
La Lune a longtemps été particulièrement associée à la folie et à l'irrationalité, des mots comme [[Lunatique (trait de caractère)|lunatique]] étant dérivés du nom [[latin]] de la Lune, ''Luna''. Les philosophes [[Aristote]] et [[Pline l'Ancien]] font valoir que la [[pleine lune]] induit la folie chez les individus sensibles, estimant que le cerveau, qui est principalement composé d'eau, doit être affecté par la Lune et son pouvoir sur les marées<ref name="Arkowitz" />. En réalité, le pouvoir de la gravité lunaire est trop faible pour que cela soit le cas. De façon contemporaine, l'existence d'une influence lunaire affirmant que les admissions dans les [[Hôpital psychiatrique|hôpitaux psychiatriques]], les [[Accident de la route|accidents de la route]], les [[Homicide|homicides]] ou encore les [[Suicide|suicides]] augmenteraient lors des [[Pleine lune|pleines lunes]] est parfois défendue, même si de nombreuses d'études infirment cela<ref name="Arkowitz" />{{,}}<ref>{{Article |langue=en|prénom1=C. |nom1=Owen |prénom2=C. |nom2=Tarantello |prénom3=M. |nom3=Jones |prénom4=C. |nom4=Tennant |titre=Lunar cycles and violent behaviour |périodique=The Australian and New Zealand Journal of Psychiatry |volume=32 |numéro=4 |date=1998-08 |issn=0004-8674 |pmid=9711362 |doi=10.3109/00048679809068322 |lire en ligne=https://pubmed.ncbi.nlm.nih.gov/9711362/ |consulté le=2020-11-21 |pages=496–499 }}</ref>{{,}}<ref>{{Article |langue=en |prénom1=James |nom1=Rotton |prénom2=I. W. |nom2=Kelly |titre=Much ado about the full moon: A meta-analysis of lunar-lunacy research. |périodique=Psychological Bulletin |volume=97 |numéro=2 |date=1985 |issn=1939-1455 |issn2=0033-2909 |doi=10.1037/0033-2909.97.2.286 |lire en ligne=http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-2909.97.2.286 |consulté le=2020-11-21 |pages=286–306 }}</ref>{{,}}<ref>{{Article |langue=en |prénom1=R. |nom1=Martens |prénom2=I. W. |nom2=Kelly |prénom3=D. H. |nom3=Saklofske |titre=Lunar Phase and Birthrate: A 50-Year Critical Review: |périodique=Psychological Reports |date=2016-09-01 |doi=10.2466/pr0.1988.63.3.923 |lire en ligne=https://journals.sagepub.com/doi/10.2466/pr0.1988.63.3.923 |consulté le=2020-11-21 }}</ref>. De même, si une influence de la Lune sur l'[[agriculture]] ou les [[Forêt|forêts]] est parfois supposée, aucun effet exploitable n'a jamais été démontré<ref name="Coquillat1947" />{{,}}<ref>{{Lien web |titre=Rythmes lunaires et marées gravimétriques dans les traditions forestières et la recherche. |url=http://www.fao.org/3/XII/0905-A1.htm |site=www.fao.org |consulté le=2020-11-21}}</ref>{{,}}<ref>{{Lien web |langue=fr-FR |titre=Jardiner avec la lune : est ce vraiment une bonne idée ? |url=https://www.jardiner-autrement.fr/jardiner-avec-la-lune-est-ce-vraiment-une-bonne-idee/ |site=Jardiner Autrement |consulté le=2020-11-21}}</ref>{{,}}<ref>{{Lien web |langue=fr|titre=La Lune a-t-elle une influence sur les plantes ? - Science & Vie |url=https://www.science-et-vie.com/nature-et-enviro/la-lune-a-t-elle-une-influence-sur-les-plantes-6129 |site=www.science-et-vie.com |date=2015-07-30 |consulté le=2020-11-21}}</ref>.
La Lune a longtemps été particulièrement associée à la folie et à l'irrationalité, des mots comme [[Lunatique (trait de caractère)|lunatique]] étant dérivés du nom [[latin]] de la Lune, ''Luna''. Les philosophes [[Aristote]] et [[Pline l'Ancien]] font valoir que la [[pleine lune]] induit la folie chez les individus sensibles, estimant que le cerveau, qui est principalement composé d'eau, doit être affecté par la Lune et son pouvoir sur les marées<ref name="Arkowitz" />. En réalité, le pouvoir de la gravité lunaire est trop faible pour que cela soit le cas. De façon contemporaine, l'existence d'une influence lunaire affirmant que les admissions dans les [[Hôpital psychiatrique|hôpitaux psychiatriques]], les [[Accident de la route|accidents de la route]], les [[Homicide|homicides]] ou encore les [[Suicide|suicides]] augmenteraient lors des [[Pleine lune|pleines lunes]] est parfois défendue, même si de nombreuses d'études infirment cela<ref name="Arkowitz" />{{,}}<ref>{{Article |langue=en|prénom1=C. |nom1=Owen |prénom2=C. |nom2=Tarantello |prénom3=M. |nom3=Jones |prénom4=C. |nom4=Tennant |titre=Lunar cycles and violent behaviour |périodique=The Australian and New Zealand Journal of Psychiatry |volume=32 |numéro=4 |date=1998-08 |issn=0004-8674 |pmid=9711362 |doi=10.3109/00048679809068322 |lire en ligne=https://pubmed.ncbi.nlm.nih.gov/9711362/ |consulté le=2020-11-21 |pages=496–499 }}</ref>{{,}}<ref>{{Article |langue=en |prénom1=James |nom1=Rotton |prénom2=I. W. |nom2=Kelly |titre=Much ado about the full moon: A meta-analysis of lunar-lunacy research. |périodique=Psychological Bulletin |volume=97 |numéro=2 |date=1985 |issn=1939-1455 |issn2=0033-2909 |doi=10.1037/0033-2909.97.2.286 |lire en ligne=http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-2909.97.2.286 |consulté le=2020-11-21 |pages=286–306 }}</ref>{{,}}<ref>{{Article |langue=en |prénom1=R. |nom1=Martens |prénom2=I. W. |nom2=Kelly |prénom3=D. H. |nom3=Saklofske |titre=Lunar Phase and Birthrate: A 50-Year Critical Review: |périodique=Psychological Reports |date=2016-09-01 |doi=10.2466/pr0.1988.63.3.923 |lire en ligne=https://journals.sagepub.com/doi/10.2466/pr0.1988.63.3.923 |consulté le=2020-11-21 }}</ref>. De même, si une influence de la Lune sur l'[[agriculture]] ou les [[Forêt|forêts]] est parfois supposée, aucun effet exploitable n'a jamais été démontré<ref name="Coquillat1947" />{{,}}<ref>{{Lien web |titre=Rythmes lunaires et marées gravimétriques dans les traditions forestières et la recherche. |url=http://www.fao.org/3/XII/0905-A1.htm |site=www.fao.org |consulté le=2020-11-21}}</ref>{{,}}<ref>{{Lien web |langue=fr-FR |titre=Jardiner avec la lune : est ce vraiment une bonne idée ? |url=https://www.jardiner-autrement.fr/jardiner-avec-la-lune-est-ce-vraiment-une-bonne-idee/ |site=Jardiner Autrement |consulté le=2020-11-21}}</ref>{{,}}<ref>{{Lien web |langue=fr|titre=La Lune a-t-elle une influence sur les plantes ? - Science & Vie |url=https://www.science-et-vie.com/nature-et-enviro/la-lune-a-t-elle-une-influence-sur-les-plantes-6129 |site=www.science-et-vie.com |date=2015-07-30 |consulté le=2020-11-21}}</ref>.


En revanche, un sélénotropisme {{Incise|c'est-à-dire l'orientation d'un organisme vis-à-vis de la Lune}} a été demontré chez certaines espèces de [[Ver palolo|vers palolo]] tels que l'''[[Eunicida|Eunice]] fuscata'' du Pacifique tropical<ref>{{Ouvrage|langue=fr|prénom1=François|nom1=Ramade|titre=Dictionnaire encyclopédique des sciences de la nature et de la biodiversité|passage=582|éditeur=Dunod|date=2008-10-29|isbn=978-2-10-053670-2|lire en ligne=https://books.google.be/books?id=YEEnk_vAsqAC|consulté le=2020-05-20}}</ref>{{,}}<ref>{{Article |langue=en |prénom1=H. |nom1=Caspers |titre=Spawning periodicity and habitat of the palolo worm Eunice viridis (Polychaeta: Eunicidae) in the Samoan Islands |périodique=Marine Biology |volume=79 |numéro=3 |date=1984-04-01 |issn=1432-1793 |doi=10.1007/BF00393254 |lire en ligne=https://doi.org/10.1007/BF00393254 |consulté le=2020-11-21 |pages=229–236 }}</ref> ou chez des zooplancton en [[Arctique]] pendant la [[nuit polaire]]<ref>{{Lien web |langue=en-US |prénom=Sam |nom=Wong |titre=Moonlight helps plankton escape predators during Arctic winters |url=https://www.newscientist.com/article/dn28738-moonlight-helps-plankton-escape-predators-during-arctic-winters/ |site=New Scientist |consulté le=2020-11-21}}</ref>. Par ailleurs, la croissance de certains animaux comme le [[Nautilus (mollusque)|nautile]] serait influencée par la Lune et l'observation de leurs coquilles permet, avec des spécimens anciens [[fossile]]s, de confirmer de façon indépendante l'allongement du [[mois lunaire]] à l'échelle géologique en raison de l'augmentation de la distance Terre-Lune<ref>{{Article |langue=en |prénom1=Peter G. K. |nom1=Kahn |prénom2=Stephen M. |nom2=Pompea |titre=Nautiloid growth rhythms and dynamical evolution of the Earth–Moon system |périodique=Nature |volume=275 |numéro=5681 |date=1978-10 |issn=1476-4687 |doi=10.1038/275606a0 |lire en ligne=https://www.nature.com/articles/275606a0 |consulté le=2020-11-21 |pages=606–611 }}</ref>. Cependant, cette hypothèse reste contestée<ref>{{Ouvrage|langue=fr|prénom1=François|nom1=Rothen|lien auteur1=François Rothen|titre=Surprenante gravité|passage=24-25|éditeur=PPUR presses polytechniques|date=2009|isbn=978-2-88074-774-9|lire en ligne=https://books.google.fr/books?hl=fr&id=Fok93e_83NwC&dq=nautile&q=nautile|consulté le=2020-11-21}}</ref>{{,}}<ref>{{article |langue=en |auteur=Donald B. DeYoung |titre=The Moon: A Faithful Witness in the Sky |journal=Acts & Facts |vol=8 |date=1979 |url=http://www.icr.org/article/moon-faithful-witness-sky/}}</ref>.
En revanche, un sélénotropisme {{Incise|c'est-à-dire l'orientation d'un organisme vis-à-vis de la Lune}} a été demontré chez certaines espèces de [[Ver palolo|vers palolo]] tels que l'''[[Eunicida|Eunice]] fuscata'' du Pacifique tropical<ref>{{Ouvrage|langue=fr|prénom1=François|nom1=Ramade|titre=Dictionnaire encyclopédique des sciences de la nature et de la biodiversité|passage=582|éditeur=Dunod|date=2008-10-29|isbn=978-2-10-053670-2|lire en ligne=https://books.google.be/books?id=YEEnk_vAsqAC|consulté le=2020-05-20}}</ref>{{,}}<ref>{{Article |langue=en |prénom1=H. |nom1=Caspers |titre=Spawning periodicity and habitat of the palolo worm Eunice viridis (Polychaeta: Eunicidae) in the Samoan Islands |périodique=Marine Biology |volume=79 |numéro=3 |date=1984-04-01 |issn=1432-1793 |doi=10.1007/BF00393254 |lire en ligne=https://doi.org/10.1007/BF00393254 |consulté le=2020-11-21 |pages=229–236 }}</ref> ou chez des zooplancton en [[Arctique]] pendant la [[nuit polaire]]<ref>{{Lien web |langue=en-US |prénom=Sam |nom=Wong |titre=Moonlight helps plankton escape predators during Arctic winters |url=https://www.newscientist.com/article/dn28738-moonlight-helps-plankton-escape-predators-during-arctic-winters/ |site=New Scientist |consulté le=2020-11-21}}</ref>. Par ailleurs, la croissance de certains animaux comme le [[Nautilus (mollusque)|nautile]] serait influencée par la Lune et l'observation de leurs coquilles permet, avec des spécimens anciens [[fossile]]s, de confirmer de façon indépendante l'allongement du [[mois lunaire]] à l'échelle géologique en raison de l'augmentation de la distance Terre-Lune<ref>{{Article |langue=en |prénom1=Peter G. K. |nom1=Kahn |prénom2=Stephen M. |nom2=Pompea |titre=Nautiloid growth rhythms and dynamical evolution of the Earth–Moon system |périodique=Nature |volume=275 |numéro=5681 |date=1978-10 |issn=1476-4687 |doi=10.1038/275606a0 |lire en ligne=https://www.nature.com/articles/275606a0 |consulté le=2020-11-21 |pages=606–611 }}</ref>. Cependant, cette hypothèse reste contestée<ref>{{Ouvrage|langue=fr|prénom1=François|nom1=Rothen|lien auteur1=François Rothen|titre=Surprenante gravité|passage=24-25|éditeur=PPUR presses polytechniques|date=2009|isbn=978-2-88074-774-9|lire en ligne=https://books.google.fr/books?hl=fr&id=Fok93e_83NwC&dq=nautile&q=nautile|consulté le=2020-11-21}}</ref>{{,}}<ref>{{article |langue=en |auteur=Donald B. DeYoung |titre=The Moon: A Faithful Witness in the Sky |journal=Acts & Facts |vol=8 |date=1979 |url=http://www.icr.org/article/moon-faithful-witness-sky/}}</ref><ref>{{Ouvrage|langue=en|prénom1=W. Bruce|nom1=Saunders|prénom2=Neil|nom2=Landman|titre=Nautilus: The Biology and Paleobiology of a Living Fossil, Reprint with additions|passage=402|éditeur=Springer Science & Business Media|date=2009-12-17|isbn=978-90-481-3299-7|lire en ligne=https://books.google.fr/books?id=ZvzCMr9azZ8C&pg=PA402&lpg=PA402|consulté le=2020-12-07}}</ref>.
[[Fichier:Altitudes Terre-Lune.svg|alt=La Lune et la Terre à l'échelle.|centré|vignette|La Lune et la Terre avec leurs tailles et les distances à l'échelle. Des distances remarquables de l'[[histoire du vol spatial]] sont indiquées pour référence. |redresse=4]]
[[Fichier:Altitudes Terre-Lune.svg|alt=La Lune et la Terre à l'échelle.|centré|vignette|La Lune et la Terre avec leurs tailles et les distances à l'échelle. Des distances remarquables de l'[[histoire du vol spatial]] sont indiquées pour référence. |redresse=4]]



Version du 7 décembre 2020 à 20:10

Lune Lune : symbole astronomique
Image illustrative de l’article Lune
Pleine lune en Amérique du Nord.
Caractéristiques orbitales
Demi-grand axe 384 399 km
(0,002 57 au)
Apogée 406 300 km
(0,002 7 au)
Périgée 356 700 km
(0,002 4 au)
Circonférence orbitale 2 449 000 km
Excentricité 0,054 90
Période de révolution 27,321 582 d
(27 j 7 h 43.1 min)
Période synodique 29,530 589 d
Vitesse orbitale moyenne 1,022 km/s
Vitesse orbitale maximale 1,052 km/s
Vitesse orbitale minimale 0,995 km/s
Inclinaison sur l’écliptique 5,145°
Satellites connus 0
Satellite de la Terre
Désignation systématique Terre I
Caractéristiques physiques
Rayon équatorial 1 737,4 km
(0,273 Terre)
Rayon polaire 1 735,97 km
(0,273 Terre)
Périmètre équatorial 10 921 km
(0,273 Terre)
Superficie 37 871 220,85 km2
(0,074 Terre)
Volume 2,195 8 × 1010 km3
(0,020 Terre)
Masse 7,347 7 × 1022 kg
(0,012 3 Terre)
Masse volumique globale 3,346 4 × 103 kg/m3
Gravité de surface 1,622 m/s2
(0,165 4 g)
Vitesse de libération 2,38 km/s
Période de rotation
(jour sidéral)
27,321 582 d
Vitesse de rotation
(à l’équateur)
16,657 2 km/h
Inclinaison de l’axe 6,687°
Ascension droite du pôle nord 270,00°
Déclinaison du pôle nord 66,54°
Albédo géométrique visuel 0,136
Température de surface
• Maximum 396 K (123 °C)
• Moyenne 200 K (−73 °C)
• Minimum 40 K (−233 °C)
Caractéristiques de l’atmosphère
Pression atmosphérique 10−10 Pa

La Lune[a], ou Terre I[b], est l'unique satellite naturel permanent de la planète Terre. Il s'agit du cinquième plus grand satellite naturel du Système solaire et du plus grand des satellites planétaires par rapport à la taille de la planète autour de laquelle il orbite. La Lune est le deuxième satellite le plus dense du Système solaire après Io, un satellite de Jupiter[c].

La Lune est en rotation synchrone avec la Terre, lui montrant donc constamment la même face. Celle-ci, appelée face visible, est marquée par des mers lunaires volcaniques sombres qui remplissent les espaces entre les hautes terres claires — certaines atteignant les 9 km d'altitude — et ses cratères d'impact proéminents. Respectivement, elle possède une face cachée, qui présente moins de mers mais beaucoup plus de cratères dont notamment le bassin Pôle Sud-Aitken, le plus grand du satellite et un des plus grands du Système solaire avec un diamètre de 2 500 km. Elle est dépourvue d'atmosphère dense et de champ magnétique. Son influence gravitationnelle sur la Terre produit les marées océaniques, les marées terrestres, un léger allongement de la durée du jour et la stabilisation de l'inclinaison de l'axe terrestre.

La distance orbitale moyenne de la Lune est de 384 402 km, soit environ trente fois le diamètre terrestre, et sa période de révolution vaut 27,3 jours. La taille apparente de la Lune dans le ciel est presque la même que celle du Soleil, puisque l'étoile est environ 400 fois plus grande que le satellite mais également 400 fois plus éloignée. Par conséquent, la Lune peut couvrir presque exactement le Soleil dans le ciel, permettant l'existence d'éclipses solaires totales. Cette correspondance de taille apparente disparaîtra dans un avenir lointain du fait de l'augmentation de la distance lunaire d'environ 3,8 mm par an. Sa formation remonterait à il y a environ 4,51 milliards d'années, peu de temps après celle de la Terre. L'explication la plus largement acceptée est que la Lune s'est formée à partir des débris restants après un impact géant entre une proto-Terre et une protoplanète de la taille de Mars, appelée Théia.

Elle est survolée pour la première fois par une sonde spatiale en 1959 par Luna 2. Durant plus d'une décennie, elle est notamment étudiée par les programmes Luna et Apollo, respectivement soviétique et américain. Cette course à l'espace culmine en 1969 avec les premiers humains posant le pied sur la Lune lors de la mission Apollo 11, Neil Armstrong et Buzz Aldrin. Dix autres astronautes de la NASA foulent ensuite le sol lunaire jusqu'en 1972 avec Apollo 17. Ces missions permettent de ramener sur Terre des roches lunaires qui, avec les observations effectuées sur place, développent la connaissance géologique de la Lune, de sa structure interne et de l'histoire de sa formation. Délaissée à partir de 1974 par les puissances spatiales, l'intérêt pour l'astre renait dans les années 1990 avec deux petites missions de la NASA — Clementine et Lunar Prospector — qui découvrent des indices de la présence de glace d'eau, notamment au pôle Sud lunaire. À compter de la fin des années 1990, la Lune est la destination principale des sondes spatiales des nouvelles nations spatiales, notamment la Chine, le Japon et l'Inde. De nouvelles missions habitées vers la Lune voire une colonisation sont envisagées dans les années 2020.

Comme deuxième objet céleste après le Soleil avec la plus grande magnitude apparente dans le ciel terrestre et du fait de son cycle régulier de phases correspondant à sa période synodique de 29,5 jours, elle sert de référence et d'influence culturelle aux sociétés humaines depuis des temps immémoriaux. Celles-ci se retrouvent dans la langue, les calendriers lunaire, l'art et la mythologie, par exemple par la déesse Luna dans la mythologie romaine (Séléné dans la mythologie grecque) qui lui donne son nom.

Caractéristiques physiques

Masse et diamètre

Carte du champ gravitationnel de la Lune réalisée par le GRAIL.

La Lune est un ellipsoïde de révolution en raison de l'étirement créé par les forces de marée, son grand axe étant déplacé de 30° par rapport à la Terre en raison d'anomalies gravitationnelles causées par ses bassins d'impact. Sa forme est plus allongée que ce que les forces de marée actuelles peuvent expliquer. Ce « renflement fossile » suggère que la Lune s'est solidifiée lorsqu'elle orbitait à une distance moitié moindre de celle actuelle avec la Terre et qu'elle serait à présent trop froide pour que sa forme ne s'adapte à ce changement d'orbite[2].

Le champ gravitationnel de la Lune est mesuré en suivant l'effet Doppler des signaux radio émis par les appareils en orbite. Les principales caractéristiques de la gravité lunaire sont les réplétions, de grandes anomalies gravitationnelles positives associées à certains des bassins d'impact géants, en partie causées par les coulées de lave basaltique dense qui remplissent les mers lunaires[3],[4],[5]. Ces anomalies influencent grandement l'orbite des engins spatiaux autour de la Lune. Cependant, les coulées de lave ne peuvent à elles seules expliquer toute la signature gravitationnelle et il existe des concentrations de masse (mascons, ou réplétions) qui ne sont pas liées au volcanisme des mers[4][6].

Son rayon équatorial est de 1 738,1 km pour un rayon polaire de 1 736,0 km, ce qui lui confère un aplatissement de 0,001 2, trois fois plus faible que celui de la Terre. Son rayon moyen est de 1 737,4 km, ce qui correspond à 27 % du rayon terrestre environ[7].

Sa masse étant de 7,346 × 1023 kg, un peu plus d'un pour cent de la masse terrestre, la gravité de surface subie sur la Lune est bien plus faible que celle sur Terre : avec 1,62 m/s2, elle est six fois plus petite. En conséquence, même si sa masse reste constante, un être humain sur la Lune verra son poids diminuer et être six fois plus léger ; de même, porter une combinaison spatiale de 90 kg sera équivalent à la sensation de porter une combinaison de 15 kg sur Terre[8]. Par ailleurs, la vitesse de libération sur la Lune est plus faible que celle de la Terre, à 2,38 km/s contre 11,2 km/s[7].

Structure interne et composition

Structure interne de la Lune.

La Lune est un corps différencié, structuré en une croûte, un manteau et un noyau distincts. Il s'agit du deuxième satellite naturel le plus dense du Système solaire après Io, un satellite de Jupiter[9]. Cependant, son noyau (probablement constitué de fer métallique allié à une petite quantité de soufre et de nickel) est petit, avec un rayon d'environ 350 kilomètres ou moins[10], soit 20 % du rayon de la Lune. Les analyses de la rotation variable dans le temps de la Lune indiquent qu'il est au moins partiellement fondu et qu'il existe donc un noyau interne solide entouré d'un noyau externe liquide[11]. Il serait ainsi solide jusqu'à peut-être 240 km du centre puis liquide jusqu'à environ 300 km.

Composition chimique de la surface de la Lune[12]
Composant Formule
chimique
Composition
Mers Terres
Silice SiO2 45,4 % 45,5 %
Alumine Al2O3 14,9 % 24,0 %
Oxyde de calcium CaO 11,8 % 15,9 %
Oxyde de fer(II) FeO 14,1 % 5,9 %
Oxyde de magnésium MgO 9,2 % 7,5 %
Oxyde de titane TiO2 3,9 % 0,6 %
Oxyde de sodium Na2O 0,6 % 0,6 %
99,9 % 100,0 %

Autour du noyau se trouve une couche limite de roches partiellement fondues jusqu'à environ 500 km du centre[13],[14]. Au-delà de cette couche se trouvent le manteau et la croûte, tous deux formés de roches solides mais de compositions chimiques et minéralogiques différentes. La croûte, épaisse (en moyenne) d'environ 50 kilomètres[10], affleure dans les « terres » ; elle est présente aussi dans les « mers », mais recouverte par d'épaisses couches de lave.

L'origine de cette structure interne serait la cristallisation fractionnée d'un océan magmatique lunaire peu après la formation de la Lune, il y a 4,5 milliards d'années[15]. Le refroidissement de cet océan magmatique aurait d'abord produit la précipitation et la sédimentation de cristaux d'olivine, de clinopyroxène et d'orthopyroxène formant un manteau mafique puis, après qu'environ les trois quarts de l'océan magmatique se soient cristallisés, la formation et la flottation de cristaux de plagioclase[d], à l'origine de la croûte[16]. Les derniers liquides à cristalliser, pris en sandwich entre la croûte et le manteau, auraient été fortement enrichis en éléments incompatibles, parmi lesquels des éléments radioactifs KREEP producteurs de chaleur[3],[10]. Cependant, ce modèle n'explique pas complètement les caractéristiques observées de la composition de la surface, notamment des dissymétries de la répartition du thorium entre les faces visibles et cachées[17],[18].

La cartographie géochimique de la surface lunaire, réalisée à partir des orbiteurs, est en accord avec cette perspective : la surface des hauts plateaux (« terres »), représentative de la croûte, est principalement constituée d'anorthosites[19], des roches ignées principalement composées de plagioclase ; celle des « mers », comme celle des échantillons de roches lunaires recueillis sur place, sont des laves de composition mafique, plus riches en fer que les basaltes terrestres[10]. La croûte aurait une épaisseur d'en moyenne environ 50 km.

Sélénographie

Fichier:Topographic Globe of the Mooon.gif
Globe topographique de la Lune à partir des données du LRO.
Carte topographique à partir des données du LRO (2010).

La topographie de la Lune, aussi appelée sélénographie, est mesurée par altimétrie laser et stéréoscopie[20]. Son relief le plus visible est le bassin Pôle Sud-Aitken, d'un diamètre d'environ 2 500 km, le plus grand cratère de la Lune et un des plus grands cratères d'impact du Système solaire de façon générale dont le choc aurait fait basculer l'axe de rotation de la Lune de 15°[3],[21],[22],[23]. Avec une profondeur de 13 km, son plancher est le point le plus bas de la surface de la Lune[21],[24]. Les altitudes les plus élevées de la surface sont situées directement au nord-est, et il a été suggéré que ces reliefs pourraient avoir été épaissis par l'impact légèrement oblique ayant formé le bassin[25]. D'autres grands bassins d'impact, tels que les mers des Pluies, de la Sérénité, des Crises, de Smyth et Orientale, possèdent également des élévations régionales basses et des bords surélevés[21]. La surface de face cachée de la Lune est en moyenne environ 1,9 km plus haute que celle de la face visible[10].

Modèle numérique de terrain avec une exagération verticale 10x.

La découverte d'escarpements de failles par le Lunar Reconnaissance Orbiter suggère que la Lune s'est rétrécie d'environ 90 mètres au cours du dernier milliard d'années. Des caractéristiques de contraction similaires existent sur Mercure[26]. Une étude de 2019 de plus de 12 000 images de l'orbiteur affirme que la Mare Frigoris, un vaste bassin près du Pôle Nord et supposé géologiquement mort, se craquelle et se déplace. Comme la Lune ne possède pas de plaques tectoniques, son activité tectonique est lente et des fissures se développent à mesure qu'elle perd de la chaleur au cours du temps[27].

« Mers » lunaires

Lunar nearside with major maria and craters labeled
Face visible avec les principales mers et cratères annotés.

Les plaines lunaires sombres et relativement dénuées de caractéristiques, clairement visibles à l'œil nu depuis la Terre, sont appelées « mers », car on croyait autrefois qu'elles étaient remplies d'eau[28]. Elles sont maintenant connues comme de vastes bassins solidifiés de lave basaltique ancienne. Bien que semblables aux basaltes terrestres, les basaltes lunaires contiennent plus de fer et aucun minéral altéré par l'eau[29]. La majorité de ces laves a fait éruption ou s'est écoulée dans des dépressions associées à des bassins d'impact. Plusieurs provinces géologiques contenant des volcans boucliers et des dômes lunaines volcaniques se trouvent à l'intérieur dans les « mers » de la face visible[30].

Presque toutes les mers se trouvent sur la face visible de la Lune et couvrent 31 % de la surface sur cette face, contre 2 % de la face cachée[31]. D'après les cartes géochimiques obtenues par le spectromètre gamma de Lunar Prospector, il est estimé que cela est dû à une concentration d'éléments produisant de la chaleur — aussi appelés KREEP — sous la croûte de la face visible qui auraient causé le réchauffement, la fonte partielle, la remontée à la surface et l'éruption du manteau sous-jacent[16],[32],[33]. La plupart des basaltes des mers lunaires ont fait éruption pendant l'Imbrien supérieur, il y a 3,0 à 3,5 milliards d'années, même si certains échantillons datés par radiométrie pourraient être aussi vieux que 4,2 milliards d'années[34].

Images du LRO de dépôts rocheux géologiquement jeunes, preuves d'un volcanisme récent sur la Lune[35].

Datés par le dénombrement des cratères, les éruptions les plus récentes sur la Lune ont longtemps été évaluées à il y a environ 1,2 milliard d'années[36]. Cependant, en 2006, une étude du cratère Ina — une minuscule dépression de Lacus Felicitatis — caractéristiques déchiquetées et relativement exemptes de poussière qui, en raison de l'absence d'érosion par les retombées de débris, semblaient n'avoir que 2 millions d'années[37]. Les tremblements de lune et les rejets de gaz indiquent également une certaine activité lunaire continue[37][38]. En 2014, la NASA annonce avoir découvert « de nombreuses preuves du volcanisme lunaire récent »[e] dans 70 parcelles irrégulières de mers identifiées par le Lunar Reconnaissance Orbiter, dont certaines datent de moins de 50 millions d'années. Cela soulève la possibilité que le manteau lunaire soit beaucoup plus chaud que pensé auparavant, notamment en ce qui concerne la face visible où la croûte profonde est beaucoup plus chaude à cause de la plus grande concentration d'éléments radioactifs[39],[40],[41],[42]. Peu auparavent, des preuves de volcanisme basaltique vieux de 2 à 10 millions d'années à l'intérieur du cratère Lowell — situé dans la Mare Orientale, au niveau de la zone de transition entre les faces visible et cachée — sont rapportées[43]. Un manteau initialement plus chaud potentiellement associé à un enrichissement local d'éléments produisant de la chaleur dans le manteau pourraient être responsable d'activités volcaniques prolongées également de l'autre côté du bassin oriental[44],[45].

Les régions plus claires de la Lune sont appelées terrae, ou plus communément hautes terres parce qu'elles ont altitude plus élevée que la plupart des mers[38]. Elles ont été datées radiométriquement comme ayant été formées il y a 4,4 milliards d'années et pourraient représenter des cumulats de plagioclases de l'océan magmatique lunaire[34],[36]. Contrairement à la Terre, aucune montagne lunaire majeure ne se serait formée à la suite d'événements tectoniques.

La concentration de mers sur la face visible reflète probablement une croûte beaucoup plus épaisse des hautes terres de la face cachée, qui pourraient s'être formées lors de l'impact à faible vitesse d'une seconde lune de la Terre, quelques dizaines de millions d'années après sa formation[46],[47].

Cratères d'impact

A grey, many-ridged surface from high above. The largest feature is a circular ringed structure with high walled sides and a lower central peak: the entire surface out to the horizon is filled with similar structures that are smaller and overlapping.
La cratère lunaire Daedalus vu par Apollo 11 sur la face cachée de la lune.

La surface lunaire présente également de nombreux cratères d'impact[48]. Ceux-ci sont formés lorsque des astéroïdes et des comètes entrent en collision avec le satellite. On en dénombre environ 300 000 d'une largeur d'au moins 1 km sur la face visible seule[48]. Les périodes de l'échelle des temps géologique lunaire sont nommées d'après les événements d'impact les plus importants s'y étant déroulés, comme le Nectarien d'après la Mare Nectaris ou l'Imbrium d'après la Mare Imbrium. Comme la Mare Orientale, ces structures sont caractérisées par de multiples anneaux de matériaux soulevés sur un diamètre de plusieurs centaines voire milliers de kilomètres et associés à un large tablier de dépôts d'éjectas qui forment un staigraphie régionale[49]. D'autres cratères plus petits comme Ératosthène et Copernic sont caractéristiques de périodes ultérieures et ont ainsi donné leur nom à l'Ératosthénien et au Copernicien. L'absence d'atmosphère, de conditions météorologiques et de processus géologiques récents font que nombre de ces cratères sont bien préservés[38].

Le cratère Tycho sur la face visible, remarquable par ses éjectas blancs.

Bien que seuls quelques bassins aient été datés avec certitude, ils sont utiles pour attribuer des âges relatifs. Comme les cratères d'impact s'accumulent à un rythme presque constant, le comptage du nombre de cratères par unité de surface est utilisé pour estimer l'âge de la surface. Par ailleurs, les âges radiométriques des roches fondues à l'impact recueillies lors des missions Apollo se situent entre 3,8 et 4,1 milliards d'années : elles sont un de principaux arguments de l'existence d'un Grand bombardement tardif[3],[50].

La croûte lunaire est recouverte d'une couche superficielle très fragmentée et labourée par les impacts, appelée régolithe, formée par les processus d'impact[38]. Le régolithe le plus fin, constituant le sol lunaire en verre de dioxyde de silicium, possède une texture ressemblant à de la neige et un parfum ressemblant à de la poudre noire[51]. Le régolithe des surfaces plus anciennes est généralement plus épais que celui des surfaces plus jeunes : son épaisseur varie de 10 à 20 km dans les hautes terres et de 3 à 5 km dans les mers[52]. Sous la couche de régolithe finement hachée se trouve le mégarégolithe, une couche de substrat rocheux très fracturé d'une épaisseur de plusieurs kilomètres[53].

La comparaison des images haute résolution obtenues par le Lunar Reconnaissance Orbiter montre un taux d'apparition des cratères significativement plus élevé que précédemment estimé. Ainsi, il est supposé qu'un processus de cratérisation secondaire causé par des éjectas projetés lors de l'impact remuent les deux premiers centimètres du régolithe cent fois plus rapidement que les modèles précédents le suggéraient, avec une échelle de temps de l'ordre de 81 000 ans[54],[55].

Imbrien inférieurImbrien supérieurPré-NectarienNectarienÉratosthénienCopernicien (Lune)
Millions d'années avant nos jours

Tourbillons lunaires

Tourbillons lunaires de Reiner Gamma, par Clementine.

Les tourbillons lunaires sont des formations brillantes énigmatiques observées à la surface de la Lune. Ils sont caractérisés par un albédo élevé, possèdent des caractéristiques optiques similaires à celles d'un régolithe relativement jeune et ont majoritairement une forme sinueuse. Leur forme est souvent accentuée par des régions de faible albédo qui serpentent entre les tourbillons brillants[56].

Présence d'eau

L'eau liquide ne peut pas persister à la surface de la Lune. Lorsqu'elle est exposée au rayonnement solaire, l'eau se dissocie rapidement par photolyse puis est emportée dans l'espace. Cependant, depuis les années 1960, les scientifiques émettent l'hypothèse que de la glace d'eau pourrait être déposée par des comètes voire être produite par la réaction de roches lunaires riches en oxygène et d'hydrogène provenant du vent solaire, laissant des traces d'eau pouvant éventuellement persister dans les cratères d'obscurité éternelle au niveau des deux pôles lunaires[57],[58]. Des simulations numériques suggèrent que jusqu'à 14 000 km2 de la surface du satellite pourrait être constamment dans l'ombre[59]. La présence de quantités d'eau utilisables sur le satellite est un facteur important afin d'envisager une colonisation de la Lune de façon rentable. En effet, l'alternative consistant à transporter de l'eau depuis la Terre serait d'un coût prohibitif[60].

Image de la Lune prise par le Moon Mineralogy Mapper. Le bleu révèle la signature spectrale de l'hydroxyde.

En 1994, l'expérience radar bistatique réalisée à bord de l'orbiteur Clementine rapporte l'existence de petites poches d'eau gelées près de la surface. Cependant, des observations radar ultérieures depuis le radiotélescope d'Arecibo suggèrent que ces découvertes pourraient plutôt être des roches éjectées lors de la formation de jeunes cratères d'impact[61]. En 1998, le spectromètre à neutrons de Lunar Prospector révèle que de fortes concentrations d'hydrogène sont présentes dans le premier mètre de profondeur du régolithe près des régions polaires[62]. Des perles de lave volcaniques, ramenées sur Terre lors de la mission Apollo 15, présentent après recherches de petites quantités d'eau dans leur intérieur[63].

La sonde Chandrayaan-1, lancée en 2008, confirme l'existence de glace d'eau à la surface grâce à son module embarqué Moon Mineralogy Mapper. Le spectromètre observe des raies d'absorption correspondant à l'hydroxyle dans la lumière solaire réfléchie, indiquant la présence de grandes quantités de glace d'eau à la surface lunaire. Les données indiquent que les concentrations pourraient atteindre 1 000 ppm[64]. À l'aide des spectres de réflectance du cartographe, l'éclairage indirect des zones dans l'ombre confirme la présence de glace d'eau à 20° de latitude des deux pôles en 2018[65]. En 2009, le LCROSS envoie un impacteur de 2 300 kg dans un cratère d'obscurité éternelle et détecte au moins 100 kg d'eau dans un panache de matériaux éjectés[66],[67],[68]. Un autre examen des données du LCROSS révèle que la quantité d'eau détectée est plus proche de 155 ± 12 kg[69]. En mai 2011, la détection de 615 à 1 410 ppm d'eau dans les inclusions magmatiques de l'échantillon lunaire 74220 est annoncée[70]. Il s'agit du « sol de verre orange » à haute teneur en titane d'origine volcanique recueilli lors de la mission Apollo 17 en 1972. Cette concentration est comparable à celle du magma dans le manteau supérieur de la Terre[71],[72].

L'analyse des résultats du Moon Mineralogy Mapper (M3) apporte en août 2018 pour la première fois des « preuves irréfutables » de la présence de glace d'eau à la surface de la Lune[71],[72]. Les données révèlent les signatures réfléchissantes distinctes de la glace d'eau, par opposition à celles de la poussière et d'autres substances réfléchissantes[73]. Les dépôts de glace sont trouvés sur les pôles Nord et Sud, bien qu'ils soient plus abondants au Sud, où l'eau est emprisonnée dans des cratères d'obscurité éternelle[71],[73].

En octobre 2020, des astronomes signalent avoir détecté de l'eau moléculaire sur la surface éclairée par le Soleil de la Lune par plusieurs engins spatiaux indépendants, dont l'Observatoire stratosphérique pour l'astronomie infrarouge (SOFIA)[74],[75],[76].

Système de coordonnées

Le point de référence des coordonnées sélénographiques est le petit cratère Mösting A, défini comme ayant les coordonnées (3° 12′ 43,2″ S, 5° 12′ 39,6″ O ). D'une façon générale, le premier méridien de la Lune correspond au centre du disque lunaire vu depuis la Terre, l'UAI recommandant comme axe la direction moyenne du centre de la Lune au centre de la Terre[77],[78].

Carte de la surface lunaire d'après les images de la mission Clementine.

Magnétosphère

Rimae Sirsalis, une zone lunaire relativement magnétisée[79].

Le magnétomètre MAG et le réflectomètre d’électrons du Lunar Prospector permettent en 2008 d'obtenir la première carte complète des champs magnétiques lunaires. Elle révèle que les bassins d'impacts dominent la distribution de ces champs, les plus faibles (inférieurs à 0.2 nT) se trouvant dans les plus larges et plus récents bassins, Mare Orientale et Mare Imbrium, tandis que les champs les plus forts (supérieurs à 40 nT) sont trouvés au-dessus des surfaces diamétralement opposées à ces mêmes bassins[80]. Les plus forts champs relevés correspondent à moins d'un centième du champ magnétique terrestre.

Cette magnétisation n'est que crustale et la Lune ne possède pas de champ magnétique planétaire dipolaire[81]. Cependant, des mesures réalisées la présence d'un champ magnétique global peu après la formation de la Lune est attestée par l'aimantation rémanente de ses roches les plus anciennes[3]. L'étude détaillée d'un échantillon de troctolite vieux de 4,25 Ga ramené lors des missions Apollo montre un paléo-champ d'une intensité de 20 à 40 µT — donc très comparable à celle du champ magnétique terrestre actuel — qui aurait progressivement décliné et qui se serait terminé au moins après il y a 2,5 Ga[82]. Ce résultat confirme la présence d'un effet dynamo à cette époque, mais ne permet pas d'en connaître précisément le mécanisme (convection thermique ou solutale, notamment)[3],[83]. En 2020, de nouvelles mesures paléomagnétiques permettent de préciser la fin de ce champ magnétique à entre il y a 1,92 et 0,8 Ga, signe d'une cristallisation complète du noyau lunaire[81].

Théoriquement, une partie de la magnétisation résiduelle peut provenir de champs magnétiques transitoires générés lors d'impacts importants par l'expansion d'un nuage de plasma généré lors d'un impact important dans un champ magnétique ambiant. Ceci est confirmé par l'emplacement apparent des plus grandes magnétisations de la croûte près des antipodes des bassins d'impact géants[84].

Atmosphère

Composition actuelle

L'atmosphère de la Lune est si ténue que sa masse totale est inférieure à 10 tonnes, correspondant presque à du vide[85]. La pression superficielle de cette petite masse est d'environ 3 × 10−15 atm (0,3 nPa), celle-ci variant avec le jour lunaire. Ses sources sont notamment le dégazage et la pulvérisation cathodique, un produit du bombardement du sol par les ions du vent solaire[86]. On trouve parmi les éléments détectés le sodium et le potassium, produits par pulvérisation cathodique et également présents dans les atmosphères de Mercure et de Io ; l'hélium-4 et le néon provenant du vent solaire[87] ; et l'argon-40, le radon-222 et le polonium-210, dégazés après leur création par désintégration radioactive dans la croûte et le manteau[88]. L'absence d'espèces neutres (atomes ou molécules) comme l'oxygène, l'azote, le carbone, l'hydrogène et le magnésium, qui sont pourtant présentes dans le régolithe n'est pas comprise[89]. De la vapeur d'eau est détectée par Chandrayaan-1 et varie en fonction de la latitude, avec un maximum à ~60-70 degrés ; elle est probablement produite par la sublimation de la glace d'eau du régolithe. Ces gaz y retournent en raison de la gravité de la Lune ou sont perdus dans l'espace, soit par la pression du rayonnement solaire, soit — s'ils sont ionisés — en étant emportés par le champ magnétique du vent solaire[89].

Poussière

Croquis des poussières lunaires par les astronautes d'Apollo 17.

Un nuage de poussière lunaire asymétrique permanent existe autour de la Lune, créé par de petites particules de comètes. Il est estimé que 5 tonnes de ces dernières frappent la surface toutes les 24 heures et éjectent cette poussière. Celle-ci reste en suspension pendant environ 10 minutes, prenant 5 minutes pour se lever et 5 minutes pour tomber. En moyenne, 120 kilogrammes de poussière sont présents en permanence au-dessus de la Lune, s'élevant à 100 kilomètres au-dessus de la surface. Les mesures de la poussière sont effectuées par l'expérience LDEX (Lunar Dust EXperiment) du LADEE, entre 20 et 100 kilomètres au-dessus de la surface pendant une période de six mois[90],[91]. Le LDEX détecte en moyenne une particule de poussière lunaire de 0,3 micromètre par minute. Le comptage des particules de poussière culmine pendant les pluies de météores des Géminides, des Quadrantides et des Taurides notamment, lorsque la Terre et la Lune traversent des débris de comètes. Les nuages sont asymétriques, plus denses près de la limite entre le côté jour et le côté nuit de la Lune[92],[93].

Atmosphère épaisse passée

En octobre 2017, des scientifiques de la NASA du Centre de vol spatial Marshall et du Lunar and Planetary Institute de Houston annoncent avoir découvert à partir d'études d'échantillons de magma de la Lune, prélevés lors des missions Apollo, que la Lune aurait possédé une atmosphère relativement épaisse pendant une période de 70 millions d'années il y a 3 ou 4 milliards d'années. Cette atmosphère, provenant de gaz éjectés lors d'éruptions volcaniques lunaires, était deux fois plus épaisse que celle trouvée actuellement sur la planète Mars. L'ancienne atmosphère lunaire aurait progressivement été dépouillée par les vents solaires puis dissipée dans l'espace[94].

Température de surface

L'inclinaison de l'axe de la Lune par rapport à l'écliptique n'est que de 1,5424°, soit beaucoup moins que les 23,44° de la Terre. Pour cette raison, l'éclairement solaire de la première varie beaucoup moins selon les saisons, et les détails topographiques jouent un rôle crucial dans les effets saisonniers[95].

D'après les images prises par Clementine en 1994, il semble que quatre régions montagneuses au bord du cratère Peary, près du pôle Nord de la Lune, puissent rester illuminées pendant toute la journée lunaire, créant ainsi des pics de lumière éternelle. De telles régions n'existent pas au pôle Sud. De même, il y existe des endroits qui restent dans l'ombre permanente au fond de nombreux cratères polaires[59], impliquant que ces « cratères d'obscurité éternelle » sont extrêmement froids. Le Lunar Reconnaissance Orbiter mesure les températures estivales les plus basses dans les cratères du pôle Sud à 35 K (−238 °C) et seulement 26 K (−247 °C) vers le solstice d'hiver dans le cratère Hermite au pôle Nord[85]. C'est la température la plus froide du Système solaire jamais mesurée par un engin spatial, plus froide même que la surface de Pluton[95].

Les températures moyennes de la surface de la Lune sont connues, mais elles diffèrent grandement en fonction du moment de la journée pour les régions considérées : jusqu'à environ 400 K (127 °C) lorsqu'elles sont exposées au rayons solaires à l'équateur et jusqu'à 100 K (−173 °C) lorsqu'elles sont à l'ombre[7],[85],[96].

Formation

Vue d'artiste d'une collision similaire à l'impact géant.

La Lune commence à se former il y a 4,51 milliards d'années, environ 60 millions d'années après la formation du Système solaire[3]. Plusieurs mécanismes de formation sont proposés[97], parmi lesquels la fission de la Lune à partir de la croûte terrestre par la force centrifuge[98] (ce qui exigerait une vitesse de rotation initiale de la Terre trop élevée)[99], la capture gravitationnelle d'une Lune préformée (ce qui nécessiterait cependant une atmosphère terrestre étendue irréaliste pour dissiper l'énergie de la Lune de passage)[100],[99] et la co-formation de la Terre et de la Lune dans le disque d'accrétion primordial (ce qui ne peut pas expliquer la disparition des métaux dans la Lune)[3],[38],[99]. Ces hypothèses ne peuvent pas non plus expliquer le moment cinétique élevé du système Terre-Lune[101].

Ainsi, l'hypothèse dominante est que le système Terre-Lune se soit formé après l'impact d'une protoplanète ayant une taille similaire à celle de Mars (nommé Théia, la mère de Séléné dans la mythologie grecque) avec la proto-Terre ; elle est appelée l'hypothèse de l'impact géant[3],[38][102]. L'impacteur, la croûte et une partie du manteau terrestre sont disloqués et projette une grande quantité de débris en orbite autour de la Terre. La Lune se forme ensuite par accrétion d'une partie de ce nuage de débris en un temps très court, de l'ordre d'un siècle[103],[104]. L'impact aurait libéré beaucoup d'énergie, faisant fondre la couche externe de la Terre, et ainsi formé un océan de magma[105],[106]. De même, la Lune nouvellement formée aurait vu la présence d'un océan magmatique lunaire, d'une profondeur estimée à au moins plusieurs centaines de kilomètres[38][105].

Bien que l'hypothèse de l'impact géant puisse expliquer de nombreux paramètres, certains éléments ne sont pas expliqués, notamment en ce qui concerne la proximité des compositions isotopiques de la Lune et de la Terre, son volcanisme relativement récent ou l'existence passée d'un champ magnétique planétaire[3],. En effet, la mesure en 2001 des signatures isotopiques des roches lunaires du programme Apollo révèle qu'elles présentent la même signature isotopique que les roches terrestres, mais elles différaient de presque tous les autres corps du Système solaire[3]. Cette observation est inattendue car il était alors pensé que la plupart des matériaux qui formaient la Lune provenaient de Théia, or il est ensuite annoncé en 2007 qu'il y a moins de 1 % de chance que Théia et la Terre aient des signatures isotopiques identiques,. D'autres échantillons lunaires d'Apollo étudiés en 2012 comportent la même composition en isotopes de titane que la Terre, ce qui est en conflit avec ce qui est attendu si la Lune s'est formée loin de la Terre ou est dérivée de Theia.

Ces écarts peuvent s'expliquer par des variations de l'hypothèse de l'impact géant[3]. Des modèles alternatifs sont ainsi proposés parmi lesquels une série d'impacts moins cataclysmiques[107] ou la formation d'une synestia — un nuage torique de gaz et de fragments rocheux[108].

Schéma de l'hypothétique impact géant.

Système Terre-Lune

Orbite

Animation de l'orbite de la Lune autour de la Terre de 2018 à 2027.

La Lune effectue une orbite complète autour de la Terre par rapport aux étoiles fixes environ une fois tous les 27,3 jours — sa période de révolution ou période sidérale[f]. Cependant, comme la Terre se déplace simultanément sur son orbite autour du Soleil, il faut environ deux jours de plus avant que la Lune ne montre la même phase à la Terre, soit environ 29,5 jours — sa période synodique[g],[109],[7].

Contrairement à la plupart des satellites naturels des autres planètes, elle orbite plus près du plan de l'écliptique que du plan équatorial de la planète. Son orbite est subtilement perturbée par le Soleil et la Terre de nombreuses différentes façons. Par exemple, le plan de l'orbite de la Lune tourne graduellement tous les 18,61 ans, ce qui affecte d'autres aspects du mouvement lunaire[110]. Ces effets consécutifs sont mathématiquement décrits par les lois de Cassini[111],[112].

Par ailleurs, la Lune est le seul satellite naturel permanent de la Terre. Il existe un certain nombre d'objets géocroiseurs comme (3753) Cruithne qui coorbitent avec la Terre : leurs orbites les rapprochent de la Terre à un intervalle régulier, mais qui s'altère sur le long terme. Ce sont des quasi-satellites et non des satellites naturels car ils n'orbitent pas autour de la Terre mais autour du Soleil, l'existence d'autres lunes de la Terre n'étant pas confirmée. Cependant, certains de ces astéroïdes peuvent devenir parfois pendant quelques mois — voire quelques années — des satellites temporaires de la Terre. Seul 2006 RH120 est connu pour avoir été dans ce cas, entre 2006 et 2007[113],[114].

Rotation

Vidéo d'une rotation complète de la Lune prise par le LRO en 2013[115].

La Lune est en rotation synchrone autour de la Terre : sa période de rotation est synchrone à sa période de révolution[7]. Elle présente donc toujours le même hémisphère nommé « face visible de la Lune » à un observateur terrestre, l'hémisphère opposé étant en conséquence appelé « face cachée de la Lune ». Cependant, en raison de l'effet de la libration, environ 59% de la surface de la Lune peut être en pratique être vue depuis la Terre. La face cachée est parfois appelée à tort le «côté obscur», mais elle est totalement éclairée aussi souvent que le côté visible : une fois tous les 29,5 jours terrestres, à la nouvelle lune[109],[116].

Cette rotation synchrone résulte des frottements créés par les forces de marée de la Terre sur la Lune, l'énergie de rotation s'étant dissipée sous forme de chaleur. Auparavant, la Lune avait une vitesse de rotation plus rapide mais, assez vite dans son histoire, celle-ci ralentit progressivement jusqu’à ce que la période de ce mouvement coïncide avec celle de la révolution du satellite autour de la Terre.

En 2016, en utilisant des données collectées lors de la mission Lunar Prospector, des planétologues détectent deux zones riches en hydrogène (probablement une ancienne glace d'eau) à deux points opposés de la Lune. Il est supposés que ces zones étaient il y a des milliards d'années les pôles lunaire avant qu'elle ne soit verrouillée avec la Terre[3],[117].

Tailles relatives

Comparaison des tailles de la Terre, la Lune, Pluton et Charon.

La Lune est un satellite naturel exceptionnellement grand par rapport à la Terre : elle fait plus du quart du diamètre et 1/81e de la masse de la planète[7],[3]. Il s'agit d'ailleurs de la plus grande lune du Système solaire par rapport à la taille de sa planète, bien que Charon soit plus grande par rapport à la planète naine Pluton, faisant 50 % de son diamètre et 1/9e de sa masse[118]. La superficie de la Lune est légèrement inférieure à celle de l'Asie[119].

Le barycentre du système Terre-Lune, leur centre de masse commun, est situé à environ 1 700 km (environ un quart du rayon de la Terre) sous la surface de la Terre. La Terre tourne autour de ce barycentre une fois par mois sidéral, à 1/81e de la vitesse de la Lune, soit environ 12,5 mètres par seconde. Ce mouvement se superpose à la révolution beaucoup plus rapide de la Terre autour du Soleil — d'une vitesse d'environ 30 km par seconde — et est donc négligeable.

Effets de marée

Mécanisme des marées :
A. Syzygie ; B. Quadrature
1. Soleil ; 2. Terre ; 3. Lune
4. Direction de l'attraction par le Soleil
5. Direction de l'attraction par la Lune.

L'attraction gravitationnelle que les corps célestes ont les uns avec les autres diminue inversement au carré de la distance de ces masses les unes par rapport aux autres. En conséquence, l'attraction exercée par la Lune est légèrement plus grande pour le côté de la Terre le plus proche d'elle que pour le côté opposé. Cela entraîne une force de marée qui affecte à la fois les océans et la croûte terrestre. L'effet le plus évident des forces de marée est de provoquer deux renflements dans les océans de la Terre, l'un du côté faisant face à la Lune et l'autre du côté opposé. Il en résulte des variations du niveau des mers, appelés marées océaniques[120]. Lorsque la Terre tourne sur son axe, l'un des renflements de l'océan (marée haute) est localement maintenu en place «sous» la Lune, tandis qu'une autre marée de ce type est opposée. En conséquence, il y a deux marées hautes et deux marées basses en environ 24 heures[120]. Puisque la Lune est en orbite autour de la Terre dans le même sens que la rotation de la Terre sur elle-même, les marées hautes se produisent environ toutes les 12 heures et 25 minutes, les 25 minutes étant dues au temps que met la Lune pour orbiter autour de la Terre.

Grande marée près de l'équinoxe d'automne à Wimereux, en France.

Le Soleil a également un effet sur les marées terrestres, mais celui-ci a une amplitude représentant seulement 40 % de celle de la Lune. Lors de la syzygie, quand la Lune et le Soleil sont alignés, la somme de leurs interactions est responsable des grandes marées au moment des équinoxes de printemps et d'automne[120].

Si la Terre ne possédait pas de continents, la marée produite serait d'une amplitude d'un mètre seulement et serait très prévisible. En réalité, les marées océaniques sont grandement affectées par d'autres facteurs : la friction de l'eau au niveau des fonds océaniques, l'inertie du mouvement de l'eau ou encore le ballottement de l'eau entre les différents bassins océaniques[121].

Alors que la gravitation provoque l'accélération et le mouvement des océans fluides de la Terre, le couplage gravitationnel entre la Lune et le corps solide de la Terre est principalement élastique et plastique. Le résultat est un autre effet de marée de la Lune sur la Terre qui provoque un renflement de la partie solide de la Terre la plus proche de la Lune qui agit comme un moment en opposition à la rotation de la Terre : une marée solide, ou terrestre. Cela «draine» le moment cinétique et l'énergie cinétique de la rotation de la Terre, la ralentissant progressivement[3],[122],[120]. Cet élan angulaire, perdu de la Terre, est transféré à la Lune dans un processus connu sous le nom d'accélération par effet de marée qui élève la Lune sur une orbite plus élevée. Ainsi, la distance entre la Terre et la Lune augmente — la Lune était environ dix fois plus proche de la Terre lors de sa formation qu'à l'époque contemporaine — et la rotation de la Terre ralentit en réaction[3]. Les mesures des réflecteurs lunaires laissés pendant les missions Apollo révèlent que la distance Terre-Lune augmente d'en moyenne 3,8 mm par an[123],[124]. Les horloges atomiques montrent également l'effet inverse, à savoir que le jour sur Terre s'allonge d'environ 15 microsecondes chaque année, augmentant lentement la vitesse à laquelle le temps universel coordonné est ajustée par secondes intercalaires[125].

La Terre et la Lune apparaissent en croissants devant un fond noir.
La Terre et la Lune photographiées en 2007 depuis Mars par la sonde Mars Reconnaissance Orbiter. Depuis l'espace, la Terre présente des phases similaires à celles de la Lune.

Laissée suivre son cours, cette traînée de marée continuerait jusqu'à ce que la rotation de la Terre et la période orbitale de la Lune correspondent, créant un verrouillage mutuel par les forces de marées entre les deux astres. En conséquence, la Lune serait suspendue dans le ciel au-dessus d'un méridien, comme c'est par exemple le cas entre Pluton et sa lune Charon. Cependant, le Soleil deviendra une géante rouge et engloutira le système Terre-Lune bien avant cet événement[126],[127].

De la même manière, la surface lunaire subit des marées d'une amplitude d'environ 10 cm tous les 27 jours, avec deux composantes : une fixe due à la Terre parce qu'en rotation synchrone, et une composante variable due au Soleil[122]. La composante induite par la Terre provient de la libration, résultat de l'excentricité orbitale de la Lune — si l'orbite de la Lune était parfaitement circulaire, il n'y aurait que des marées solaires. Les effets cumulés de ces contraintes de marée produisent des séismes lunaires. Ces phénomènes restent beaucoup moins courants et moins intenses que les tremblements de terre, bien qu'ils puissent se dérouler pendant jusqu'à une heure du fait de l'absence d'eau pour amortir les vibrations sismiques. L'existence de ces séismes est une découverte inattendue des sismographes placés sur la Lune lors des missions Apollo de 1969 à 1972[128].

Animation d'une marée atmosphérique exagérée.

Par ailleurs, ces forces de marées ont également un impact décelable sur le climat dans le cadre de marées atmosphériques[129],[130]. Lors des différentes phases de la Lune, la force de marée attire plus ou moins l’atmosphère et participe ainsi, à hauteur de quelques pourcents, aux phénomènes de surpression et de dépression[131].

Finalement, la présence de la Lune a une influence sur la stabilisation de l'inclinaison de l'axe terrestre. En effet, l’obliquité de la Terre varie entre 21 et 24° environ par rapport au plan de l’écliptique tandis que Mars, qui n'a pas de satellite naturel aussi massif, voit son obliquité varier de 20 et 60° sur des millions d'années. De même, avant la formation de la Lune, l'axe de rotation terrestre oscillait de façon chaotique, ce qui aurait rendu impossible l'apparition de la vie à sa surface du fait des dérèglements climatiques causés ; ceci a disparu une fois le verrouillage gravitationnel par effet de marée entre la Terre et son satellite naturel mis en place[132],[133],[122].

Influence lunaire

L'influence lunaire est la croyance pseudo-scientifique d'une corrélation entre des étapes spécifiques du cycle lunaire et des changements physiologiques chez les êtres vivants sur Terre, y compris les humains[134],[135].

La Lune a longtemps été particulièrement associée à la folie et à l'irrationalité, des mots comme lunatique étant dérivés du nom latin de la Lune, Luna. Les philosophes Aristote et Pline l'Ancien font valoir que la pleine lune induit la folie chez les individus sensibles, estimant que le cerveau, qui est principalement composé d'eau, doit être affecté par la Lune et son pouvoir sur les marées[135]. En réalité, le pouvoir de la gravité lunaire est trop faible pour que cela soit le cas. De façon contemporaine, l'existence d'une influence lunaire affirmant que les admissions dans les hôpitaux psychiatriques, les accidents de la route, les homicides ou encore les suicides augmenteraient lors des pleines lunes est parfois défendue, même si de nombreuses d'études infirment cela[135],[136],[137],[138]. De même, si une influence de la Lune sur l'agriculture ou les forêts est parfois supposée, aucun effet exploitable n'a jamais été démontré[134],[139],[140],[141].

En revanche, un sélénotropisme — c'est-à-dire l'orientation d'un organisme vis-à-vis de la Lune — a été demontré chez certaines espèces de vers palolo tels que l'Eunice fuscata du Pacifique tropical[142],[143] ou chez des zooplancton en Arctique pendant la nuit polaire[144]. Par ailleurs, la croissance de certains animaux comme le nautile serait influencée par la Lune et l'observation de leurs coquilles permet, avec des spécimens anciens fossiles, de confirmer de façon indépendante l'allongement du mois lunaire à l'échelle géologique en raison de l'augmentation de la distance Terre-Lune[145]. Cependant, cette hypothèse reste contestée[146],[147][148].

La Lune et la Terre à l'échelle.
La Lune et la Terre avec leurs tailles et les distances à l'échelle. Des distances remarquables de l'histoire du vol spatial sont indiquées pour référence.

Observation

Visibilité

Conjonction de Vénus et la Lune au-dessus du VLT, au Chili[149].

Lune possède un albédo géométrique exceptionnellement bas de 0,11 lui conférant une réflectance légèrement supérieure que celle de l'asphalte. Cependant, avec une magnitude apparente de -12,6 pendant la pleine lune, la Lune est le corps céleste le plus visible dans le ciel terrestre, après le Soleil et devant Vénus. Elle est ainsi facilement observable à l’œil nu la nuit, voire en plein jour[109]. Des jumelles permettent de distinguer les mers et les plus gros cratères d'impact.

Cela est principalement dû à sa grande proximité avec la Terre. Par ailleurs, le satellite bénéficie d'une amélioration de la luminosité grâce l'effet d'opposition : la pleine lune est douze fois plus lumineuse qu'un quartier de Lune, même si la surface angulaire éclairée est seulement deux fois plus élevée. De plus, la constance des couleurs du système visuel humain recalibre les relations entre les couleurs d'un objet et son environnement, ce qui explique que la lune éclairée par le soleil ressorte lorsque le ciel environnant est relativement sombre. Les bords de la pleine lune semblent aussi brillants que le centre, sans assombrissement centre-bord, en raison des propriétés réfléchissantes du sol lunaire, qui rétroréfléchit davantage la lumière vers le Soleil que dans d'autres directions.

Pleine lune vue en Belgique.
Pleine lune vue en Australie.

L'orientation de Lune dans le ciel varie en fonction de la latitude de l'observateur terrestre[150],[151]. En effet, puisque la Lune orbite près de l'écliptique, quelqu'un la regardant depuis une latitude positive (au nord de l'équateur terrestre) verra par exemple le proéminent cratère Tycho plus proche de l'horizon tandis qu'un observateur depuis une latitude négative (au sud de l'équateur), la verra « à l'envers »[109],[151]. Sur les deux photographies ci-contre, on observe le cratère en bas de l'image pour une pleine lune vue en Belgique tandis qu'il se trouve en haut de l'image pour une pleine lune vue en Australie[152].

Une illusion lunaire : la lune semble apparaître plus grande lorsqu'elle près de l'horizon ou d'édifices (ici à Washington, D.C., États-Unis).

L'altitude atteinte par la lune dans le ciel lors de sa culmination varie en fonction de sa phase et de la période de l'année. La pleine lune est la plus élevée en hiver pour chaque hémisphère.

La taille apparente de la pleine lune est d'environ 0,52° (en moyenne) dans le ciel, ce qui est à peu près la même taille apparente que le soleil. Cependant, elle semble plus grande lorsqu'elle est proche de l'horizon en raison d'un effet purement psychologique, connu sous le nom d'illusion lunaire, décrit pour la première fois au VIIe siècle av. J.-C.[109],[153]. Plusieurs explications sont proposées, comme le fait que le cerveau humain perçoive le ciel comme légèrement aplati — impliquant qu'un objet à l'horizon est considéré comme plus grand — ou encore que la taille relative des objets vus à l'horizon fassent apparaître la lune plus grande, similairement à l'illusion d'Ebbinghaus[154],[155],[156].

Image d'une distorsion de la Lune par l'atmosphère terrestre prise à bord de la navette Discovery en 1999.

L'apparence de la Lune, comme celle du Soleil, peut être affectée par l'atmosphère terrestre. Les effets optiques courants sont par exemple un anneau de halo de 22°, formé lorsque la lumière de la Lune est réfractée à travers les cristaux de glace des nuages de haut cirrostratus, ou des couronnes plus petites lorsque la Lune est vue à travers de minces nuages[157].

Phases

Lune gibbeuse croissante observée en Belgique.

Du fait de sa rotation synchrone, la Lune présente toujours la même partie de sa surface à la Terre : la face dite « visible ». Cependant, la moitié de la sphère éclairée par les rayons solaires — et donc à la fois orientée à la fois vers la Terre et vers le Soleil —varie au cours des 29,53 jours d’un cycle synodique. Ce phénomène donne naissance à ce que l’on appelle les phases lunaires, qui se succèdent au cours d’un cycle appelé « lunaison »[158]. Au fil du cycle lunaire, la déclinaison de la Lune varie : d’un jour au suivant, elle augmente pendant une moitié du cycle et elle décroît pendant l’autre moitié.

La Lune présentant toujours la même face envers la Terre et son orbite étant peu inclinée, les phases lunaires présentent à peu près toujours les mêmes parties de la Lune d'un cycle à l'autre. On distingue principalement quatre points caractéristiques de l'apparence lunaire : la nouvelle lune quand la Lune et le Soleil sont en conjonction par rapport à la Terre, le premier quartier quand la Lune est en quadrature Est, la pleine lune lorsque la Lune et le Soleil sont en opposition par rapport à la Terre et le dernier quartier quand la Lune est en quadrature ouest. Entre chacun de ces points caractéristiques, on parlera successivement de premier croissant, de lune gibbeuse croissante, de lune gibbeuse décroissante et enfin de dernier croissant[159],[160],[161].

Quartier de lune croissante en Australie et en Suède, respectivement.

La partie éclairée de la Lune étant symétrique par rapport au plan formé par le Soleil, la Lune et l'observateur, la Lune présente à chaque instant la même phase à tout observateur terrestre quelle que soit sa latitude[109],[162]. Cependant, l'orientation de l'horizon de l'observateur terrestre varie par rapport à ce plan. Ainsi, pour de faibles latitudes — près de l'équateur et sous les tropiques —, l'horizon est perpendiculaire au plan et un croissant de Lune apparaîtra horizontal, comme un « sourire ». Pour des latitudes plus élevées, ce quartier apparaîtra plus vertical, comme un « C »[162],[163]. La Lune est visible pendant deux semaines tous les 27,3 jours aux pôles Nord et Sud.

Changements de l'angle entre la direction de la lumière du soleil et la vue de la Terre, et les phases de la Lune qui en résultent, vues de l'hémisphère nord au cours d'une lunaison. La distance Terre-Lune n'est pas à l'échelle.

Super lune

Comparaison entre une pleine lune « moyenne » et une super lune.

Une super lune est une pleine lune ou une nouvelle lune qui coïncide avec une distance minimale du satellite à la Terre[164][165]. Il ne s'agit pas un terme d'astronomie mais plutôt d'une expression usuelle employée pour désigner certains phénomènes astronomiques[166].

Le 14 novembre 2016, la Lune est au plus proche en pleine lune depuis 1948 à 356 500 km du centre de la Terre. Cette pleine lune est alors 30 % plus lumineuse que lorsqu'elle est à son périgée, car son diamètre angulaire est 14 % plus grand et [167][168]. Elle ne sera pas plus proche avant le 25 novembre 2034[169][170].

Éclipses

Depuis la Terre, la Lune et le Soleil apparaissent à la même taille, comme visible lors de l'éclipse solaire de 1999 (gauche), tandis que pour la sonde STEREO-B, située dans une orbite terrestre suivant la planète, la Lune apparait bien plus petite que le Soleil (droite).

Les éclipses ne se produisent que lorsque le Soleil, la Terre et la Lune sont alignés, phénomène appelé une « syzygie ».

Les éclipses solaires se produisent à la nouvelle lune, lorsque la Lune se trouve entre le Soleil et la Terre. En revanche, les éclipses lunaires se produisent à la pleine lune, lorsque la Terre est entre le Soleil et la Lune. L'existence des premières est une conséquence du fait que la taille apparente de la Lune soit à peu près la même que celle du Soleil, les deux formant un angle d'environ 0,5° dans le ciel terrestre. En effet, si le Soleil a un diamètre 400 fois plus grand que celui de la Lune, il est également 400 fois plus loin de la Terre que ne l'est la Lune.

Les variations de taille apparente, dues aux orbites non circulaires, sont également presque identiques, bien que se produisant dans des cycles différents. permet ainsi d'avoir parfois des éclipses solaires totales — avec la Lune apparaissant plus grande que le Soleil — et annulaires — la Lune apparaissant plus petite que le Soleil[171]. Lors d'une éclipse totale, la Lune recouvre complètement le disque du Soleil et la couronne solaire devient visible à l'œil nu.

Comme la distance entre la Lune et la Terre augmente très lentement avec le temps, le diamètre angulaire de la Lune diminue dans le ciel terrestre[172]. De plus, au fur et à mesure qu'il évolue sur sa séquence principale pour devenir une géante rouge, la taille du Soleil et son diamètre apparent dans le ciel augmentent quant à eux lentement d'environ 5 % par milliard d'années, chiffre similaire à la vitesse à laquelle le diamètre angulaire apparent de la Lune diminue. La combinaison de ces deux facteurs signifie qu'il y a des centaines de millions d'années, la Lune couvrait toujours complètement le Soleil lors des éclipses solaires, et qu'aucune éclipse annulaire n'était alors possible. De même, d'ici des centaines de millions d'années, la Lune ne pourra plus couvrir complètement le Soleil et les éclipses solaires totales deviendront impossibles[173].

Montage des phases d'une éclipse lunaire derrière l'Acropole d'Athènes.

Par ailleurs, l'orbite de la Lune autour de la Terre étant inclinée d'environ 5,145° par rapport au plan de l'écliptique, les éclipses ne se produisent pas à chaque pleine et nouvelle lune. Pour qu'une éclipse se produise, la Lune doit se trouver près de l'intersection des deux plans orbitaux[174]. La périodicité et la récurrence des éclipses du Soleil par la Lune et de la Lune par la Terre sont décrites par le saros, dont la période est d'environ 18 ans[175].

Parce que la Lune bloque continuellement la vue d'une zone circulaire du ciel d'un demi-degré de large[176], un phénomène appelé l'occultation se produit lorsqu'une étoile ou une planète passe derrière la Lune et est alors cachée. Ainsi, une éclipse solaire est une occultation du Soleil. Parce que la Lune est relativement proche de la Terre, les occultations des étoiles individuelles ne sont pas visibles partout sur la planète, ni en même temps. En raison de la précession de l'orbite lunaire, différentes étoiles sont occultées chaque année[177].

Librations

Over one lunar month more than half of the Moon's surface can be seen from Earth's surface.
Animation montrant un ensemble de vues simulées de la Lune depuis l'hémisphère nord sur une période d'un mois. Le mouvement vertical de l'animation met en évidence le phénomène de libration lunaire.

La Lune présentant toujours le même hémisphère à la Terre, on appelle « librations » les phénomènes d'oscillation permettant à un observateur à la surface de la Terre de voir plus de 50 % de la surface de la Lune[178],[179]. Ces phénomènes peuvent prendre quatre formes : les librations en longitude, les librations en latitude, les librations parallactiques et les librations physiques[180].

L’ensemble de ces phénomènes de libration au cours de lunaisons successives permet d’observer environ 59 % de la surface lunaire depuis la surface terrestre[180]. Toutefois, les zones supplémentaires ainsi offertes à l’observation sont très déformées par l’effet de perspective et rendent difficile l’observation de ces régions depuis le sol[181].

Phénomène lunaire transitoire

Il y existe une controverse historique quant au fait que les caractéristiques de la surface lunaire changent avec le temps. Aujourd'hui, beaucoup de ces affirmations sont considérées comme une conséquence d'illusions d'optique, résultant d'une observation dans différentes conditions d'éclairage, d'une mauvaise qualité de visibilité ou de dessins inadéquats. Cependant, un dégazage se produit occasionnellement et pourrait être responsable d'un pourcentage très mineur de ces observations, faisant partie des phénomènes lunaires transitoires signalés. En 2006, il est suggéré qu'une surface lunaire de 3 km de diamètre aurait été modifiée significativement par un événement de dégagement il y a environ un million d'années[182],[183].

Ces phénomènes transitoires de quelques dixièmes de milliseconde, de magnitude généralement de 5 à 10 (mais pouvant être 3), ne sont visibles qu'au télescope ou lunette associés à une caméra vidéo et sur la partie non éclairée de la Lune. Le flash lunaire provient de la chute de corps (provenant essentiellement d'essaims de météorites ou de comètes) de 5 à 15 cm percutant la Lune à des vitesses de 20 à 30 km/s, ce qui fait fondre la roche en surface au point d'impact et projette des gouttelettes de roches liquides. L'éclair lumineux est produit par l'énergie dégagée lors de cet impact[184],[185]. Depuis cinq siècles, des centaines de ces phénomènes ont été observés par de nombreux observateurs différents[186].

Histoire des observations

Avant l'invention du télescope

Calculs d'Aristarque sur les tailles relatives du Soleil, de la Terre et de la Lune dans Sur les dimensions et les distances au IIIe siècle av. J.-C. (ici, une copie grecque du Xe siècle).

L'une des premières représentations possibles de la Lune est une sculpture sur roche nommée Orthostat 47 datée du troisième millénaire avant notre ère et découverte à Knowth, en Irlande[187],[188]. La première trace écrite de l'observation d'une éclipse solaire date de 1223 av. J.-C, retrouvée sur une tablette d'argile dans la ville d'Ougarit[189].

La compréhension des cycles lunaire est un développement précoce de l'astronomie : dès le VIIIe siècle av. J.-C., les astronomes babyloniens tiennent des archives systématiques des éclipses solaires[189] et dès le Ve siècle av. J.-C., ils notent le Saros, la période de 18 ans des éclipses lunaires[190]. L'astronome chinois Shi Shen donne au IVe siècle av. J.-C. des instructions pour prédire les éclipses solaires et lunaires. Archimède conçoit au IIIe siècle av. J.-C. un planétarium capable de calculer les mouvements de la Lune et d'autres objets du système solaire[191].

La forme physique de la Lune et la cause du clair de lune sont également comprises tôt dans l'histoire de l'astronomie. Le philosophe grec Anaxagore estime au Ve siècle av. J.-C. que le Soleil et la Lune sont tous deux des roches sphériques et que cette dernière reflète la lumière du premier[192]. Par ailleurs, Démocrite suppose que les marques observées sur la Lune sont « des montagnes élevées et des vallées creuses »[193]. Bien que les Chinois de la dynastie Han associaient la Lune à une énergie assimilée au ch'i, leur théorie de « l'influence rayonnante » reconnait également que la lumière de la Lune est simplement le reflet du Soleil, et Jing Fang note la sphéricité de la Lune au Ier siècle av. J.-C.[194].

Étude des phases de la Lune et des éclipses par Al-Biruni au XIe siècle.

Cependant, Aristote théorise à l'inverse dans Du ciel que la Lune marque la frontière entre les sphères des éléments mutables (terre, eau, air et feu) et les étoiles impérissables de l'éther. Le monde supralunaire est parfait, et donc la Lune est une sphère lisse et inaltérable. Le disciple d'Aristote, Cléarque de Soles, explique les taches lunaires par le fait que la Lune est un miroir poli qui réfléchit le paysage terrestre. Cette théorie est néanmoins invalidée par l'observation que la surface de la Lune reste inchangée alors qu'elle se déplace devant la Terre, poussant d'autres savants à imaginer que les taches soient des vapeurs condensées d'un nuage ou émanent de la Terre. Cette conception aristotélicienne d'une Lune lisse subsiste en partie jusqu'à la fin du Moyen Âge, voire laisse des traces jusque dans la Perse du XIXe siècle et dans le folklore européen du XXe siècle[195],[196],[197].

Au IIe siècle av. J.-C., Séleucos de Séleucie avance à raison que les marées sont dues à l'attraction de la Lune et que leur hauteur dépend de la position de la Lune par rapport au Soleil[198]. Auparavant, Aristarque avait calculé au IIIe siècle av. J.-C. dans Sur les dimensions et les distances la taille de la Lune et sa distance, obtenant une valeur d'environ vingt fois le rayon de la Terre pour la distance. Ces valeurs sont grandement améliorées par Hipparque au IIe siècle av. J.-C. dans Des grandeurs et des distances du Soleil et de la Lune. Ce texte est perdu mais ses résultats rapportés par Ptolémée au IIe siècle, évaluant la distance lunaire à 59 fois le rayon de la Terre et son diamètre à 0,292 fois celui de la planète. Ces estimations sont déjà très proches de la réalité, qui est de respectivement 60 et 0,273 environ[199]. Également au IIe siècle, Plutarque écrit dans Œuvres morales que « la Lune est une terre céleste » et que les zonnes sombres sont des dépressions remplies d’eau. Elles sont ainsi appelés maria (mot latin signifiant « mers » au pluriel), tandis que les hauts plateaux de couleur claire sont baptisés terrae (« terres »)[200]. Ces noms, bien qu'incorrects, demeurent dans la nomenclature actuelle[201][202].

Croquis de la Lune par Galilée dans Sidereus Nuncius (1610).

Au Ve siècle, l'astronome indien Aryabhata mentionne dans son Aryabhatiya que la cause de l'éclat de la Lune est la lumière du soleil réfléchie[203]. Al-Marwazi, un astronome persan, estime le diamètre de la Lune à environ 3 000 km et sa distance à la Terre à environ 346 000 km au IXe siècle[204]. L'astronome et physicien Alhazen du XIe siècle développe en avançant que la lumière du soleil n'est pas réfléchie par la Lune comme un miroir, mais que la lumière est émise depuis chaque partie de la surface ensoleillée de la Lune dans toutes les directions[205],[206]. Shen Kuo, de la dynastie Song, créé ensuite une allégorie assimilant la croissance et le déclin de la Lune à une boule ronde d'argent qui, une fois aspergée de poudre blanche et vue de côté, apparaîtrait comme un croissant[194].

Après l'invention du télescope

Étude de la Lune par Robert Hooke dans Micrographia (1665).

La sélénographie précise ne débute qu'au cours du XVe siècle, les premiers dessins publiés étant ceux de William Gilbert en 1603, à partir d'observations à l'œil nu. En 1610, Galilée publie dans Sidereus Nuncius l'un des premiers dessins de la Lune réalisé grâce à un instrument — sa lunette astronomique — et note que l'astre n'est pas lisse mais présente des montagnes et des cratères. Thomas Harriot réalise des dessins similaire avec une lunette quelques mois plus tôt mais ne les publie pas[197],[207]. La cartographie télescopique de la Lune suit au XVIIe siècle avec la première carte publiée par le cartographe hollandais Michael Florent van Langren en 1645 à partir d'observations télescopiques[197],[208]. Elle est la première à marquer distinctement les maria, cratères et montagnes et adopte une première nomenclature catholique d'après des rois et des saints[209]. Deux ans plus tard, Johannes Hevelius publie Selenographia, le premier traité et atlas totalement consacré à la Lune[210]. Celui-ci comprend une nouvelle carte plus détaillée de la surface lunaire et comprend une nouvelle nomenclature qui restera populaire dans les pays protestants pendant plus d'un siècle. Cependant, c'est la nomenclature proposée par Giovanni Battista Riccioli et son assistant Francesco Maria Grimaldi en 1651 dans l'Almagestum novum donnant aux cratères des noms d’astronomes et de personnages célèbres qui reste dans la postérité[197],[209],[211].

Photographie de la Lune par Lewis Rutherfurd en 1865.

Une grande carte de la Lune en quatre feuilles nommée Mappa Selenographica, établie par Guillaume Beer et Johann Heinrich von Mädler entre 1834 et 1836 puis publiée dans Der Mond en 1837, fournit la première étude trigonométriquement précise des caractéristiques lunaires[209]. Elle comprend l'indication de l'altitude de plus d'un millier de montagnes avec des précisions similaires à celles des premières tentatives de géographie terrestre. Par ailleurs, les auteurs arrivent à la conclusion que la Lune ne possède ni d'étendue d'eau et ni d'atmosphère significative[209].

Toutes les mesures sont réalisées par le biais d'observations directes jusqu'à ce que John William Draper crée l'astrophotographie en mars 1840 avec un daguerréotype de la Lune[212][213]. La qualité des photographies de la Lune progresse rapidement ensuite jusqu'à ce que la photographie lunaire soit reconnue à la fin du XIXe siècle comme un sous-discipline de l'astronomie[213].

Les cratères lunaires, notés pour la première fois par Galilée, sont considérés comme d'origine volcanique jusqu'à la proposition pendant les années 1870 de Richard A. Proctor selon laquelle ils seraient en réalité des cratères d'impact créés par des collisions d'astéroïdes ou de comètes. Ce point de vue gagne le soutien en 1892 du géologue Grove Karl Gilbert qui retrouve ces résultats par l'expérimentation. Des études comparatives de ces cratères de 1920 aux années 1940 conduisent au développement de l'échelle des temps géologiques lunaires qui devient dans les années 1950 une branche nouvelle et croissante de la géologie planétaire[214]. Cependant, l'observation depuis la Terre reste limitée à la face visible et c'est notamment par l'exploration spatiale que les connaissances sur le satellite naturel augmentent, la première image de la face cachée de la Lune étant par exemple obtenue en 1959 grâce à la sonde spatiale soviétique Luna 3.

Exploration

La course à l'espace (1959-1976)

Les différents sites d'alunissage des missions soviétiques et américaines.

Entre le début du programme soviétique Luna en 1959 et jusqu'aux années 1970 avec les dernières missions habitées du programme Apollo américain et la dernière mission Luna en 1976, la course spatiale inspirée par la guerre froide entre l'Union soviétique et les États-Unis conduit à une accélération de l'intérêt pour l'exploration de la Lune. Dès que leurs lanceurs parviennent à placer des engins en orbite, les deux pays commencent à envoyer des sondes vers le satellite naturel, notamment dans le cadre de ces deux programmes rivaux Luna et Apollo.

Programme Luna

Première vue de l'histoire de la face cachée de la Lune, prise par Luna 3.

L'Union soviétique débute son programme spatial lunaire par une série de trois échecs de missions sans noms en 1958[215].

Cependant, la quatrième est un succès et le premier survol de la Lune est réalisé par la sonde soviétique Luna 1 le 4 janvier 1959, qui est en outre le premier engin de l'histoire placé en orbite héliocentrique. Il est rapidement suivi par le premier objet fabriqué par l’homme à atteindre la Lune — et de façon générale à toucher un autre corps céleste que de la Terre —, la sonde Luna 2 qui s’y écrase le . Les premières photos de la face cachée de la lune sont ensuite envoyées le par la sonde Luna 3[215].

Une première cartographie de la surface lunaire est produite grâce aux photographies prises par Zond 3 le 18 juillet 1965, les images couvrant 19 000 000 km2 et contribuant au développement de la sélénographie[216].

Timbre commémoratif de Luna 9 présentant la première vue de sol lunaire photographiée par la sonde.

Les ingénieurs russes progressent ensuite au cours de la décennie 1960 depuis des engins seulement capables survoler ou de s'écraser sur la Lune jusqu'à des atterrisseurs. Luna 9 est ainsi la première sonde à parvenir à se poser sur la Lune plutôt que de s’y écraser , retournant des photographies de la surface lunaire. La première sonde mise en orbite autour de la Lune est Luna 10, le [215].

Le , le rover (astromobile) Lunokhod 1, transporté par Luna 17, est le premier véhicule robotisé à explorer sa surface. Trois ans plus tard, le rover Lunokhod 2, transporté par Luna 21, est le premier engin à parcourir la distance d'un marathon (42,1 km) sur un autre corps céleste.

Finalement, l'URSS développe trois missions missions de retour d'échantillons vers la Lune ayant permis de rapporter 0,3 kg de roches lunaires sur Terre : Luna 16 en 1970, Luna 20 en 1972 et Luna 24 en 1976[217]. Cette dernière est l'ultime mission soviétique vers la Lune.

Programme Apollo

Neil Armstrong sur la Lune, travaillant au module lunaire Eagle pendant Apollo 11 (1969)[218].

Le programme spatial américain est d'abord confié à l'armée avant d'être largement transféré à l'agence civile NASA[219].

Suite à l'engagement de 1961 du président John F. Kennedy, différents programmes spatiaux sont lancés ainsi que la promesse qu'un marchera sur la Lune avant la fin de la décennie. Parmi eux, le programme Ranger produit les premières photos en gros plan du satellite, le programme Lunar Orbiter cartographie la Lune entière et le programme Surveyor aboutit à l'alunissage de Surveyor 1 le 2 juin 1966, soit quatre mois après Luna 9. L'utilisation du terme « atterrissage » est cependant préférée, notamment par le CNRS et l'Académie des Sciences, même dans le cas de la Lune[220],[221].

Photo de Buzz Aldrin, une des plus célèbres de la conquête spatiale[222].

Le programme Apollo est développé en parallèle, stimulé par un potentiel programme lunaire habité soviétique. Après une série de tests sans équipage et avec équipage en orbite terrestre, la première mission humaine en orbite lunaire est réalisée en décembre 1968 par Apollo 8. impliquant que les membres de son équipages (Frank Borman, James Lovell, et William Anders) sont les premiers humaine à apercevoir directement la face cachée de la Lune.

L'atterrissage d'Apollo 11 le est considéré comme le point culminant de la course spatiale engagée entre les États-Unis et l’URSS pendant la guerre froide[223]. À 02h56 UTC, le premier humain à poser le pied la Lune est Neil Armstrong, commandant de la mission, suivi de Buzz Aldrin[224]. Environ 500 millions de personnes suivent l'événement en mondovision, la plus grande audience télévisée pour une émission en direct à l'époque[225],[226].

Harrison Schmitt se tenant debout à côté du rocher Taurus-Littrow durant la troisième sortie extra-véhiculaire de la mission Apollo 17 (1972)[227].

Les derniers hommes à marcher sur le sol lunaire sont Harrison Schmitt et Eugene Cernan, lors de la mission Apollo 17 en . Les missions Apollo 11 à 17 (sauf Apollo 13, qui annule son atterrissage en cours de mission) prélèvent 380 kg de roche lunaire et de sol en 2 196 échantillons[228]. Des ensembles d'instruments scientifiques sont installés sur la surface lunaire lors du programme Apollo, notamment le Apollo Lunar Surface Experiments Package. Celui-ci comprend des instruments à longue durée de vie, comprenant des sondes de flux thermique, des sismomètres et des magnétomètres. La transmission directe des données vers la Terre prend fin à la fin de 1977 en raison de considérations budgétaires.

Des réflecteurs lunaires sont aussi déposés lors de ces missions afin de mesurer la distance Terre-Lune avec une précision de quelques centimètres grâce à un faisceau laser. Instruments passifs, ils sont quant à eux toujours utilisés[229]. Les sondes soviétiques du programme Lunokhod en déposent également[230].

Au total, au XXe siècle et jusqu'à nos jours, 24 astronautes ont orbité autour de la Lune et 12 d'entre eux ont marché dessus, tous pendant le programme Apollo[231][232].

Depuis les années 1970

Couronne solaire derrière la Lune observée par Clementine en 1994. Vénus est aussi visible[233].

La Lune commence à partir de 1974 à être délaissée par les puissances spatiales au profit des autres corps célestes du Système solaire, notamment vers le Système solaire externe pour la NASA avec les programmes Pioneer et Voyager. Dans les années 1990, la Lune est par ailleurs la destination principale des sondes des nouvelles nations spatiales qui développent des programmes d'exploration du Système solaire, principalement le Japon, la Chine et l'Inde. Ainsi, le Japon devient en 1990 le troisième pays à placer son orbiteur Hagoromo en orbite lunaire, largué par la sonde Hiten.

L'intérêt pour la Lune renaît à la suite de deux petites missions de la NASA, Clementine et Lunar Prospector respectivement lancées en 1994 et 1998, qui permettent la réalisation de la première carte topographique quasi globale de la Lune ainsi que la découverte d'un excès d'hydrogène aux pôles lunaires, probablement dû à la présence de glace d'eau dans les cratères d'obscurité éternelle[234].

Vue du spectromètre Moon Mineralogy Mapper de Chandrayaan-1. La présence d'eau est détectée pour la première fois sur un cratère[235].

Dans les années 2000, de nombreuses missions vers la Lune sont réalisées par différentes agences spatiales. L'Agence spatiale européenne lance SMART-1 en septembre 2003 afin de réaliser une étude des éléments chimiques de la surface lunaire jusqu'à son impact en septembre 2006[236]. L'Agence japonaise d'exploration aérospatiale lance l'orbiteur SELENE (ou KAGUYA) en octobre 2007, qui obtient des données de géophysique lunaire et prend le premier film haute définition au-delà de l'orbite terrestre avec une fin de mission en juin 2009[237],[238]. L'Organisation indienne pour la recherche spatiale met sa première sonde en orbite lunaire, Chandrayaan-1, de novembre 2008 jusqu'à sa perte de contact en août 2009, celle-ci confirmant la présence d'eau sur la Lune[239][240]. Chandrayaan-2 est lancée en juillet 2019 mais son atterrisseur Vikram est perdu lors de son largage[241].

Le satellite DSCOVR capture la Lune passant devant la Terre[242].

L'ambitieux programme chinois d'exploration lunaire débute avec Chang'e 1, qui se met en orbite autour de la Lune en novembre 2007 jusqu'à son impact lunaire contrôlé en mars 2009, renvoyant une carte complète de la Lune. Chang'e 2, à partir d'octobre 2010, atteint la Lune plus rapidement et cartographie la Lune à une résolution plus élevée sur une période de huit mois avant de finalement aller réaliser un survol de l'astéroïde 4179 Toutatis en décembre 2012. En décembre 2013, Chang'e 3 dépose un atterrisseur lunaire qui déploie à son tour un rover lunaire nommé Yutu (en chinois : 玉兔). Il s'agit du premier atterrissage sur la Lune depuis Luna 24 en 1976 et de la première mission de rover lunaire depuis Lunokhod 2 en 1973. Une autre mission de rover, Chang'e 4, est lancée en 2019, devenant la première sonde à atterrir sur la face cachée, dans le cratère Von Kármán[243]. Chang'e 5, une mission de retour d'échantillons, est lancée en novembre 2020[244].

Dans les années 2010, la NASA met de nouveau en œuvre des missions vers la Lune. Le Lunar Reconnaissance Orbiter est notamment lancé en juin 2009 avec l'impacteur LCROSS. Si ce dernier achève sa mission avec un impact planifié dans le cratère Cabeus en octobre 2009, le LRO est toujours en activité en fournissant régulièrement une altimétrie lunaire précise — permettent de dresser une carte topographique — et des images haute résolution[245]. Deux autres orbiteurs sont lancés par la NASA en janvier 2012 puis en octobre 2013 : GRAIL afin d'étudier la structure interne de la Lune et LADEE pour étudier l'exosphère lunaire, avec respectivement des fins de mission en décembre 2012 et avril 2014.

D'autres satellites, comme le Deep Space Climate Observatory situé au L1 du système Soleil-Lune, fournissent périodiquement des images de la Lune[242].

Image panoramique de la surface lunaire réalisée pendant la mission Apollo 17 en 1972. On observe le rover lunaire Apollo et Harrison Schmitt[246].

Chronologie

Chang'e 6SLIMKorea Pathfinder Lunar OrbiterChang'e 5Chandrayaan-2Luna 25Chang'e 4Lunar Reconnaissance OrbiterBeresheetChang'e 1SELENEChang'e 3LADEEGRAILChang'e 2LCROSSSMART-1Lunar ProspectorClementineHitenLuna 24Luna 20Programme ArtemisProgramme LunokhodLuna 16Programme ApolloProgramme SurveyorProgramme Lunar OrbiterProgramme ZondProgramme RangerProgramme LunaProgramme Pioneer

Présence humaine

Colonisation

Vue d'artiste d'une colonie lunaire avancée, réalisée en 1995[247].

La colonisation de la Lune est le projet consistant à installer une voire plusieurs bases permanentes habitées sur la Lune[248]. Une présence humaine permanente sur un corps planétaire autre que la Terre est déjà un thème récurrent de science-fiction et la Lune constituerait alors une préparation en vue de voyages plus lointains[248][249].

La NASA commence à planifier la reprise des missions humaines suite à l'appel du président américain George W. Bush en janvier 2004 avec le programme de politique spatiale Vision for Space Exploration[250]. Une mission humaine sur la Lune avant 2020 est alors prévue[251]. Le programme Constellation est donc financé et des tests débutent sur un véhicule spatial avec équipage appelé Orion ainsi que pour une base lunaire[252]. Le programme est finalement annulé en 2010 par le président Barack Obama pour cause de budget[253][254].

Vue d'artiste d'astronautes durant le programme Artemis, réalisée en 2020.

Cependant, à l'instigation du président américain Donald Trump, le retour de l'homme sur la Lune est remis en avant en avril 2019 avec le programme Artemis. Programme spatial habité de la NASA, il prévoit de poser un équipage d'ici 2024[251][249]. Celui-ci doit déboucher sur une exploration durable du satellite avec l'organisation de missions régulières dont l’aboutissement serait l'installation d'un poste permanent sur la Lune[249].

Le programme permettrait également de mettre au point les équipements et procédures qui nécessaires à d'hypothétiques missions habitées vers Mars[255]. Le lanceur lourd Space Launch System (SLS) et le véhicule spatial Orion dont le développement avait déjà débuté seront notamment employés. Par ailleurs, une future station spatiale Lunar Orbital Platform-Gateway (LOP-G), placée en orbite autour de la Lune, servira de relais entre la Terre et la surface de la Lune[256]. Les sites d'atterrissage retenus pour les différentes missions se situent au pôle sud de la Lune car les réserves de glace d'eau présentes dans les cratères d'obscurité éternelle présentent un intérêt stratégique dans la perspective de missions de longue durée[257][258].

Statut légal

Buzz Aldrin et le drapeau des États-Unis planté sur la Lune : un acte symbolique sans revendication[259].

Bien que les atterrisseurs du programme Luna aient dispersé des fanions aux couleurs de l'URSS sur la Lune et que drapeaux américains aient symboliquement été plantés sur les sites d'atterissage des missions Apollo, aucune nation ne revendique la propriété d'une partie de la surface de la Lune. La Russie, la Chine, l'Inde et les États-Unis sont signataires du traité de l'espace — entré en vigueur le 10 octobre 1967 — qui définit la Lune et tout l'espace extra-atmosphérique comme appartenant à l'ensemble de l'humanité. Ce traité limite également l'utilisation de la Lune à des fins pacifiques, interdisant explicitement les installations militaires et les armes de destruction massive, notamment les armes nucléaires.

Traité sur la Lune :
  • Ratifié
  • Signé
  • Non partie

En 1979, le traité sur la Lune est créé afin de restreindre l'exploitation des ressources naturelles de la Lune par une seule nation[260]. Il est cependant considéré comme un échec car aucune nation disposant de programmes ou de projets de vols spatiaux habités ne le signe. Bien que plusieurs personnes physiques aient revendiqué la Lune en tout ou en partie, aucune de ces revendications n'est considérée comme crédible.

En août 2016, le gouvernement américain autorise la start-up américaine Moon Express à atterrir sur la Lune. C'est la première fois qu'une entreprise privée reçoit ce droit de le faire. La décision est considérée comme un précédent aidant à définir des normes réglementaires pour les activités commerciales dans l'espace lointain à l'avenir, car jusqu'à présent, les activités des entreprises étaient limitées à la Terre ou à ses alentours[261].

En 2020, le président américain Donald Trump signe un décret intitulé « Encouragement au soutien international pour la récupération et l'utilisation des ressources spatiales » (en anglais : Encouraging International Support for the Recovery and Use of Space Resources). L'ordonnance souligne que les États-Unis ne considèrent pas l'espace comme un bien commun et réitère les critiques faites au traité sur la Lune[262][263].

Astronomie depuis la Lune

Image en fausses couleurs de la Terre en lumière ultraviolette lors de la mission Apollo 16. Le côté jour réfléchit une grande quantité de lumière UV du Soleil et le côté nuit montre de faibles émission UV et des aurores polaires dues à des particules chargées[264].

La Lune est reconnue comme un excellent site pour les télescopes[265],[266]. En effet, elle est relativement proche et la qualité de la visibilité y est excellente en l'absence de pollution lumineuse et d'atmosphère. Aussi, certains cratères proches des pôles sont en permanence dans l'obscurité et dans le froid, ils sont donc particulièrement adaptés pour télescopes infrarouges. Par ailleurs, des radiotélescopes placés sur la face cachée seraient protégés des émissions radios provenant de la Terre[267].

Le sol lunaire peut être mélangé avec des nanotubes de carbone et des polyépoxydes afin d'être utilisé dans la construction de miroirs d'un diamètre pouvant atteindre 50 mètres[268]. Un télescope zénithal lunaire pourrait être fabriqué à bas prix avec un liquide ionique[269].

Ces propriétés sont déjà mises à profit en avril 1972, lors de la mission Apollo 16, où diverses photos et spectres astronomiques sont réalisés depuis la surface lunaire[270].

Impact humain

Apollo Lunar Surface Experiments Package laissé sur la Lune, exemple de traces d'activité humaine[271].

Outre les traces d'activité humaine sur la Lune d'expérimentations réalisées sur place, comme l'Apollo Lunar Surface Experiments Package, des installations permanentes comme des œuvres d'art se trouvent sur le sol lunaire comme le Moon Museum, les Messages de bonne volonté d'Apollo 11, la Plaque lunaire ou encore le Fallen Astronaut. Restent aussi certains artefacts, comme les célèbres drapeaux des États-Unis laissés à chaque mission Apollo. Des effets personnels laissés par les astronautes y sont également toujours présents, comme les balles de golf laissées par Alan Shepard lors de la mission Apollo 14 ou une Bible déposée par David Scott lors d'Apollo 15.

Empreinte de Buzz Aldrin, symbole du passage humain sur la Lune[272].

Au total, près de 180 tonnes de matières d'origine terrestre sont présentes sur la Lune du fait de l'exploration spatiale. Les objets les plus lourds sont notamment les troisièmes étages de plusieurs fusées Saturn V utilisées lors des missions habitées. Mis-à-part le rover chinois Yutu-2, les seuls objets toujours utilisés pour des expériences scientifiques sont les réflecteurs lunaires permettant de mesurer précisément la distance Terre-Lune.

En novembre 2018, la NASA annonce que neuf sociétés commerciales seraient en concurrence pour remporter un contrat pour l'envoi de petites charges utiles sur la Lune dans le cadre des Commercial Lunar Payload Services, de nouveaux instruments scientifiques destinés au sol lunaire.

Dans la culture

Croyances et mythologies

Exemples de paréidolie formées par les taches de la Lune.

Le contraste entre les plateaux clairs et les mers plus sombre à la surface de la Lune crée par un phénomène psychologique appelé paréidolie des motifs pour l'observateur humain. Ceux-ci sont notés et interprétés par de nombreuses cultures, parmi lesquelles les motifs de l'homme dans la Lune ou du lapin lunaire[273],[274]. Dans la mythologie chinoise, ce dernier est notamment le compagnon de la déesse de la Lune Chang'e — qui donne son nom aux sondes du programme chinois d'exploration lunaire — et dans la mythologie aztèque, il sert de nourriture à Quetzalcoatl.

Kudurru du XIIe siècle av. J.-C.Sîn est symbolisé par le croissant.

Dans la religion proto-indo-européenne, la Lune est personnifiée comme le dieu masculin * Meh 1 non[275]. Les anciens Sumériens associent la Lune au dieu Nanna, père d'Ishtar, la déesse de la planète Vénus et d'Utu, le dieu du Soleil. Nanna est plus tard connu sous le nom de Sîn, et est particulièrement associé à la magie et à la sorcellerie[276].

Dans la mythologie gréco-romaine, le Soleil et la Lune sont représentés respectivement par un homme et une femme (Hélios et Sol pour les grecs puis Séléné et Luna pour les romains). Il s'agit d'un développement unique à la Méditerranée orientale et les traces d'un dieu lunaire masculin antérieur dans la tradition grecque sont conservées dans la figure de Ménélas[275].

Sculpture de Séléné avec un croissant rappelant des cornes.

Dans l'iconographie mésopotamienne, le croissant est le principal symbole de Nanna-Sîn. Dans l'art grec ancien, la déesse de la Lune Séléné est représentée portant un croissant en couvre-chef dans un arrangement rappelant des cornes[277],[278]. L'arrangement d'étoile et de croissant remonte également à l'âge du bronze, représentant l'association soit du Soleil et la Lune, soit de la Lune et de la planète Vénus. Cet arrangement sert à représenter les déesses Artémis (Diane en mythologie romaine) et Hécate[279]. Via le patronage d'Hécate, il est ensuite utilisé comme un symbole de Byzance, puis est ensuite repris par l'Empire ottoman[280].

Dans la mythologie hindoue, la Lune est une entité masculine et se nomme Chandra. Elle est aussi connue sous le nom de Soma, un dieu fameux dans le Rig-Véda.

La Lune tient également un rôle prépondérant dans la culture religieuse musulmane. Non seulement elle est à la base de l'édification du calendrier lunaire musulman, elle est aussi évoquée dans les différentes biographies religieuses de Mahomet dans le cadre du miracle de la division de la lune (en arabe : انشقاق القمر ).

Des légendes concernant la thérianthropie — transformation d'un être humain en un autre animal — sont traditionnellement associée à la Lune. La plus célèbre est le lycanthrope, ou loup garou, tirant sa force de la Lune et capable de passer de sa forme humaine à sa forme bestiale pendant les nuits de pleine lune.

Calendrier

Calendrier lunaire du XVIIIe siècle.

Les phases régulières de la Lune en font un élément très pratique pour mesurer le temps, les périodes de son ascension et de son déclin sont en conséquence à la base de nombreux calendriers parmi les plus anciens[281]. Des archéologues estiment que les bâtons de comptage, des os dentelés datant d'il y a 20 à 30 000 ans, marqueraient les phases de la Lune[282],[283].

En effet, l'étude des phases de la lune est aisée et un cycle de saisons — correspondant à une année — se réalise en approximativement douze lunaisons (354 jours)[281]. Historiquement, les calendriers lunaires sont donc utilisés par les premières civilisations, comme en Mésopotamie et en Égypte antique. Cependant, s'ils sont adaptés à des peuples nomades, ils sont problématiques pour des peuples pratiquant l'agriculture en raison du décalage graduel qu'ils présentent avec les saisons, forçant des ajustements réguliers. Par ailleurs, la définition moderne du mois d'environ 30 jours suit cette tradition et est une approximation du cycle lunaire[281].

Calendrier de Coligny, luni-solaire.

Afin de prendre compte de ce décalage, de nombreux calendriers suivants sont luni-solaires avec, entre autres, les calendriers gaulois de Coligny, hébraïque ou chinois traditionnel[281],[284],[285]. Ils ont pour objectif de faire correspondre le cycle des saisons avec celui des mois lunaires, l'astronome grec Méton ayant notamment remarqué au Ve siècle av. J.-C. que 19 années solaires correspondent à 235 mois lunairesafin de les remettre en phase. Ils restent compliqués et les civilisations suivantes leur préfèreront rapidement des calendriers solaires[281].

Le calendrier purement lunaire le plus célèbre est le calendrier hégirien, datant du VIIe siècle[281]. Les mois sont alors traditionnellement déterminés par l'observation visuelle du hilal, le premier croissant de lune au-dessus de l'horizon[286][287].

Le nom anglais month (« mois ») et ses apparentés dans d'autres langues germaniques proviennent du proto-germanique *mǣnṓth-, indiquant l'utilisation d'un calendrier lunaire chez les Germains avant l'adoption d'un calendrier solaire[288][289]. Cela dérive de la racine verbale en indo-européen commun *meh 1 - « mesurer », permettant de remonter à une conception fonctionnelle de la Lune comme marqueur du mois et donc du temps[290]. Cela fait écho à l'importance de la Lune dans de nombreuses cultures anciennes pour la mesure du temps comme le latin mensis et grec ancien μείς (meis) ou μήν (mēn) signifiants « mois »)[291],[292]. En français, cette racine se trouve également dans les mots mois et menstruation (terme dérivé du latin menstrues qui signifie mensuel), notamment[293].

Nom et étymologie

Le substantif féminin lune provient du latin lūna, attesté depuis Ennius[294],[295]. Il est ensuite attesté en français dès le XIe siècle[296],[297] : sa première occurrence connue se trouve dans la Chanson de Roland, datée d'environ [293].

Un autre terme, *louksnā, « la lumineuse », une formation, dérivée de *loukís (lumière), lūx en latin (apparenté aussi au grec leukos 'blanc') décrit la lune comme un astre lumineux (pour la clarté nocturne qu'elle apporte)[298][299]. On lui doit le latin lūna ou l'arménien lusin. Des auteurs tels Varron[300] et Cicéron[301], faisaient déjà dériver luna du verbe intransitif lucere, signifiant « luire, briller, éclairer »[302],[303].

Les noms des déesses associées au satellite, Luna, Séléné et Cynthia (nom poétique d'Artémis, son lieu mythique de naissance étant le mont Cynthe) se retrouvent par ailleurs dans des termes astronomiques liés à la Lune tels qu'apolune, péricynthion et orbite sélénocentrique[304].

Personnalisée par la déesse Luna en mythologie romaine, la Lune donne également son nom au lundi (de lunis dies, en latin, pour « jour de la Lune »)[293],[305],[306].

Source d'inspiration

Prisme similaire à la pochette de The Dark Side of the Moon (1973).

En vexillologie, la pleine lune figure sur des blasons et des drapeaux comme le drapeau du Laos, de la Mongolie ou des Palaos[307]. Aussi, le symbole du croissant et surtout l'association de l'étoile et croissant étant devenus les emblèmes de l’Empire ottoman après avoir été ceux de Byzance, ces motifs figurent sur de multiples drapeaux de pays musulmans dont, entre autres, ceux de la Turquie, la Tunisie, l’Algérie ou le Pakistan[280],[308],[309]. Le croissant est également utilisé indépendamment de l'Islam, notamment sur le drapeau de Singapour[309].

En musique, la Lune est une source d'inspiration de nombreuses créations. Des compositions de musique classique y font ainsi directement référence, comme la Sonate au clair de lune (1802) de Ludwig von Beethoven — bien que cette appellation ait été donnée après la mort du compositeur — ou le mouvement Clair de lune (1905) de Claude Debussy[310],[311],[312]. Suivent ensuite les ballades Blue Moon (1934) de Richard Rodgers et Lorenz Hart qui connaîtra le succès avec divers interprètes et Fly Me to the Moon qui sera surtout popularisée par Frank Sinatra (1964)[310],[313]

Le satellite est ensuite le thème de nombreuses chansons rock, dont Bad Moon Rising (1969) de Creedence Clearwater Revival, Walking on the Moon (1979) de The Police et Man on the Moon (1992) de R.E.M ou encore l'album The Dark Side of the Moon (1973) de Pink Floyd[310],[314],[313]. En français, la chanson la plus célèbre est J'ai demandé à la Lune (2002) d'Indochine, avec dans un autre registre la comptine Au clair de la lune[311],[315].

L'astre est également célébrés par de nombreux poètes et écrivains, parmi lesquels Paul Verlaine avec Clair de lune (1869) — qui inspirera Claude Debussy — ou deux nouvelles éponymes (1882) de Guy de Maupassant[316],[317].

Finalement, la représentation de la lune dans le ciel terrestre est commune en peinture, surtout chez les romantiques car sa disparition peut évoquer le passage de la vie à la mort ou un destin malheureux[279],[318],[319].

Science-fiction

Dessin de deux Sélénites par Georges Mélies (1902).

Au IIe siècle, Lucien de Samosate écrit le récit de voyage satirique et imaginaire Histoires vraies, dans lequel les héros se rendent sur la Lune et rencontrent ses habitants, les Sélénites nommés d'après la déesse Séléné[318]. Ce récit est régulièrement cité comme un précurseur voire comme la première œuvre de science-fiction de l'histoire[320],[321],[322].

À la Renaissance, d'autres écrits de « proto science-fiction » voient le jour, parmi lesquels Le Songe ou l'Astronomie lunaire (1608) de Johannes Kepler ou Histoire comique des États et Empires de la Lune (vers 1650) de Cyrano de Bergerac, contant là encore les trajets d'hommes vers la Lune, le dernier évoquant même une sorte de fusée[320],[322],[323].

Au XIXe siècle, Edgard Allan Poe publie un calunar journalistique d'un homme se rendant vers la Lune en ballon, Aventure sans pareille d'un certain Hans Pfaall (1835)[320]. Cependant, le romancier de science-fiction le plus célèbre du siècle est Jules Verne, notamment auteur de De la Terre à la Lune (1865) puis Autour de la Lune (1869)[324],[325]. L'autre père fondateur du genre, H. G. Wells, publie quant à lui Les Premiers Hommes dans la Lune en 1901[320],[326],[327].

À partir du XXe siècle, le genre commence à atteindre une popularité considérable et de nombreux auteurs y contribuent avec, entre autres, Une femme dans la Lune (1928) de Thea von Harbou, Lumière cendrée (1955) d'Arthur C. Clarke, Menace dans le ciel (1960) d'Algis Budrys et Révolte sur la Lune (1966) de Robert A. Heinlein[320],[324].

Image du Voyage dans la Lune de Georges Mélies (1902).

Par ailleurs, Lune est un thème majeur au cinéma, et ce dès ses débuts[328],[329]. Ainsi, le premier film de science-fiction de l'histoire, Le Voyage dans la Lune (1902) de Georges Mélies est centré sur l'astre et aborde déjà le sujet d'une équipe d'explorateur la visitant et rencontrant ses habitants mythiques, les mêmes Sélénites que ceux évoqués par Lucien de Samosate[318],[328],[330]. Le roman de Thea von Harbou est également adapté en film muet par Fritz Lang dans La Femme sur la Lune (1929)[320],[329].

Après la Seconde Guerre mondiale, alors que la réalité géopolitique développe l'intérêt pour l'astre, le nombre de film augmente, avec successivement Destination... Lune ! (1950) d'Irving Pichel et les adaptations De la Terre à la Lune (1958) de Byron Haskin puis Les Premiers Hommes dans la Lune (1964) de Nathan Jura[329].

Cependant, c'est l'exploration spatiale qui développe considérablement le genre des films liés à la Lune, souvent tirés de faits réels comme Apollo 13 (1995) de Ron Howard ou First Man : Le Premier Homme sur la Lune (2018) de Damien Chazelle s'inspirant directement des missions de la NASA[328],[330]. Des films de pure science-fiction sont cependant également réalisés, de façon centrée dans Moon (2009) de Duncan Jones ou en tant que décor dans 2001, l'Odyssée de l'espace (1968) de Stanley Kubrick[330],[331].

Notes et références

  • (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Moon » (voir la liste des auteurs).

Notes

  1. Dans un contexte astronomique, le nom du satellite naturel de la Terre s'écrit toujours avec une majuscule (« Lune »), le terme « lune » désignant un satellite naturel en général.
  2. Suivant la désignation systématique des satellites, la Lune est appelée Terre I[1]. En pratique cette forme n'est guère utilisée, la Lune étant l'unique satellite naturel de la Terre.
  3. Parmi ceux dont la densité est connue.
  4. L'olivine et les pyroxènes sont plus denses que le liquide magmatique dont ils précipitent, alors que le plagioclase est moins dense : les premiers coulent mais le dernier flotte.
  5. en anglais : widespread evidence of young lunar volcanism
  6. Plus précisément, la période sidérale moyenne de la Lune (d'étoile fixe à étoile fixe) est de 27,321 661 jours (27 j 07 h 43 min 11.5 s), et sa période orbitale tropicale moyenne (d'équinoxe à équinoxe) est de 27,321 582 jours (27 j 07 h 43 min 04.7 s) ((en)Explanatory Supplement to the Astronomical Ephemeris, 1961, p. 107).
  7. Plus précisément, la période synodique moyenne de la Lune (entre les conjonctions solaires moyennes) est de 29,530 589 jours (29 j 12 h 44 min 02.9 s). (Supplément explicatif aux éphémérides astronomiques, 1961, p. 107)

Références

  1. (en) Jennifer Blue, « Planet and Satellite Names and Discoverers », USGS.
  2. (en) Garrick-Bethell, « The tidal-rotational shape of the Moon and evidence for polar wander », Nature, vol. 512, no 7513,‎ , p. 181–184 (PMID 25079322, DOI 10.1038/nature13639, Bibcode 2014Natur.512..181G, lire en ligne [archive du ], consulté le )
  3. a b c d e f g h i j k l m n o et p Matthieu Laneuville, « La Lune, une histoire pleine de surprises », sur www.pourlascience.fr, (consulté le )
  4. a et b (en) P. Muller et Sjogren, W., « Mascons: lunar mass concentrations », Science, vol. 161, no 3842,‎ , p. 680–684 (PMID 17801458, DOI 10.1126/science.161.3842.680, Bibcode 1968Sci...161..680M)
  5. (en) Richard A. Kerr, « The Mystery of Our Moon's Gravitational Bumps Solved? », Science, vol. 340, no 6129,‎ , p. 138–139 (PMID 23580504, DOI 10.1126/science.340.6129.138-a)
  6. (en) A. Konopliv, S. Asmar, E. Carranza, W. Sjogren et D. Yuan, « Recent gravity models as a result of the Lunar Prospector mission », Icarus, vol. 50, no 1,‎ , p. 1–18 (DOI 10.1006/icar.2000.6573, Bibcode 2001Icar..150....1K, CiteSeerx 10.1.1.18.1930, lire en ligne [archive du ])
  7. a b c d e et f (en) « Moon Fact Sheet », sur nssdc.gsfc.nasa.gov (consulté le )
  8. « Plus léger sur la Lune », sur Cité de l'Espace (consulté le )
  9. (en) J. Schubert et al., « Interior composition, structure, and dynamics of the Galilean satellites », dans Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, , 281-306 p. (ISBN 978-0-521-81808-7).
  10. a b c d et e (en) Mark A. Wieczorek, Bradley L. Jolliff, Amir Khan, Matthew E. Pritchard, Benjamin P. Weiss et al., « The constitution and structure of the lunar interior », Reviews in Mineralogy and Geochemistry, vol. 60, no 1,‎ , p. 221-364 (DOI 10.2138/rmg.2006.60.3, Bibcode 2006RvMG...60..221W).
  11. (en) J. G. Williams, S. G. Turyshev, D. H. Boggs et J. T. Ratcliff, « Lunar laser ranging science: Gravitational physics and lunar interior and geodesy », Advances in Space Research, vol. 37, no 1,‎ , p. 67-71 (DOI 10.1016/j.asr.2005.05.013, Bibcode 2006AdSpR..37...67W, arXiv gr-qc/0412049).
  12. (en) Stuart R. Taylor, Lunar Science : a Post-Apollo View, Oxford, Pergamon Press, (ISBN 978-0-08-018274-2), p. 64.
  13. (en) D. Brown et J. Anderson, « NASA Research Team Reveals Moon Has Earth-Like Core » [archive du ], sur NASA, .
  14. (en) R. C. Weber, P.-Y. Lin, E. J. Garnero, Q. Williams et P. Lognonné, « Seismic Detection of the Lunar Core », Science, vol. 331, no 6015,‎ , p. 309-312 (PMID 21212323, DOI 10.1126/science.1199375, Bibcode 2011Sci...331..309W, lire en ligne [archive du ] [PDF], consulté le ).
  15. (en) A. Nemchin, N. Timms, R. Pidgeon, T. Geisler, S. Reddy et C. Meyer, « Timing of crystallization of the lunar magma ocean constrained by the oldest zircon », Nature Geoscience, vol. 2, no 2,‎ , p. 133-136 (DOI 10.1038/ngeo417, Bibcode 2009NatGe...2..133N, hdl 20.500.11937/44375).
  16. a et b (en) Charles K. Shearer, Paul C. Hess, Mark A. Wieczorek, Matt E. Pritchard, E. Mark Parmentier et al., « Thermal and magmatic evolution of the Moon », Reviews in Mineralogy and Geochemistry, vol. 60, no 1,‎ , p. 365-518 (DOI 10.2138/rmg.2006.60.4, Bibcode 2006RvMG...60..365S).
  17. Philippe Ribeau-Gésippe, « Lune : une nouvelle vision de la face cachée », Pour la Science.fr,‎ (lire en ligne)
  18. (en) National Research Council, The scientific context for Exploration of the Moon, États-Unis, National Academies Press, , 120 p. (ISBN 978-0-309-10919-2, lire en ligne), « Chap 2. Current understanding of early Earth and the Moon »
  19. (en) Paul Lucey, Randy L. Korotev, Jeffrey J. Gillis, Larry A. Taylor, David Lawrence et al., « Understanding the lunar surface and space-Moon interactions », Reviews in Mineralogy and Geochemistry, vol. 60, no 1,‎ , p. 83-219 (DOI 10.2138/rmg.2006.60.2, Bibcode 2006RvMG...60...83L)
  20. (en) Paul Spudis, A. Cook, M. Robinson et B. Bussey, « Topography of the South Polar Region from Clementine Stereo Imaging », Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets,‎ , p. 69 (Bibcode 1998nvmi.conf...69S)
  21. a b et c (en) Paul D. Spudis, Robert A. Reisse et Jeffrey J. Gillis, « Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry », Science, vol. 266, no 5192,‎ , p. 1848–1851 (PMID 17737079, DOI 10.1126/science.266.5192.1848, Bibcode 1994Sci...266.1848S)
  22. (en) C.M. Pieters, S. Tompkins, J.W. Head et P.C. Hess, « Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle », Geophysical Research Letters, vol. 24, no 15,‎ , p. 1903–1906 (DOI 10.1029/97GL01718, Bibcode 1997GeoRL..24.1903P, hdl 2060/19980018038)
  23. (en-US) All About Space Magazine, « What’s the biggest visible impact crater in the Solar System? - Space Facts », sur www.spaceanswers.com (consulté le )
  24. (en) G.J. Taylor, « The Biggest Hole in the Solar System », Planetary Science Research Discoveries,‎ , p. 20 (Bibcode 1998psrd.reptE..20T, lire en ligne [archive du ], consulté le )
  25. (en) P.H. Schultz, « Forming the south-pole Aitken basin – The extreme games », Conference Paper, 28th Annual Lunar and Planetary Science Conference, vol. 28,‎ , p. 1259 (Bibcode 1997LPI....28.1259S)
  26. (en) « NASA - NASA's LRO Reveals 'Incredible Shrinking Moon' », sur www.nasa.gov (consulté le )
  27. (en) Thomas R. Watters, Renee C. Weber, Geoffrey C. Collins et Ian J. Howley, « Shallow seismic activity and young thrust faults on the Moon », Nature Geoscience, vol. 12, no 6,‎ , p. 411–417 (ISSN 1752-0894 et 1752-0908, DOI 10.1038/s41561-019-0362-2, lire en ligne, consulté le )
  28. (en) Wlasuk, Peter, Observing the Moon, Springer, , 181 p. (ISBN 978-1-85233-193-1, lire en ligne), p. 19
  29. (en) M. Norman, « The Oldest Moon Rocks », sur Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology, (consulté le )
  30. (en) Lionel Wilson et James W. Head, « Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement », Journal of Geophysical Research, vol. 108, no E2,‎ (DOI 10.1029/2002JE001909, Bibcode 2003JGRE..108.5012W, lire en ligne, consulté le )
  31. (en) J. J. Gillis et P. D. Spudis, « The Composition and Geologic Setting of Lunar Far Side Maria », Lunar and Planetary Science, vol. 27,‎ , p. 413 (Bibcode 1996LPI....27..413G)
  32. (en) D. J. Lawrence, W. C. Feldman, B. L. Barraclough et al., « Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer », Science, vol. 281, no 5382,‎ , p. 1484–1489 (PMID 9727970, DOI 10.1126/science.281.5382.1484, Bibcode 1998Sci...281.1484L, lire en ligne, consulté le )
  33. (en) G.J. Taylor, « A New Moon for the Twenty-First Century », Planetary Science Research Discoveries,‎ , p. 41 (Bibcode 2000psrd.reptE..41T, lire en ligne, consulté le )
  34. a et b (en) J. Papike, G. Ryder et C. Shearer, « Lunar Samples », Reviews in Mineralogy and Geochemistry, vol. 36,‎ , p. 5.1–5.234
  35. (en) Karen Northon, « NASA Mission Finds Widespread Evidence of Young Lunar Volcanism », sur www.nasa.gov, (consulté le )
  36. a et b (en) H. Hiesinger, J.W. Head, U. Wolf, R. Jaumanm et G. Neukum, « Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum », Journal of Geophysical Research E, vol. 108, no 7,‎ , p. 1029 (DOI 10.1029/2002JE001985, Bibcode 2003JGRE..108.5065H)
  37. a et b (en) Phil Berardelli, « Long Live the Moon! », Science,‎ (lire en ligne)
  38. a b c d e f et g Ruth Ziethe, « L'intérieur de la Lune », sur www.pourlascience.fr, (consulté le )
  39. (en) Jason Major, « Volcanoes Erupted 'Recently' on the Moon », sur news.discovery.com, Discovery (entreprise), (consulté le )
  40. (en) Karen Northon, « NASA Mission Finds Widespread Evidence of Young Lunar Volcanism », sur NASA, (consulté le )
  41. (en) Eric Hand, « Recent volcanic eruptions on the moon », Science,‎ (lire en ligne)
  42. (en) S.E. Braden, J.D. Stopar, M.S. Robinson, S.J. Lawrence et al., « Evidence for basaltic volcanism on the Moon within the past 100 million years », Nature Geoscience, vol. 7, no 11,‎ , p. 787–791 (DOI 10.1038/ngeo2252, Bibcode 2014NatGe...7..787B, lire en ligne)
  43. (en) N. Srivastava et R.P. Gupta, « Young viscous flows in the Lowell crater of Orientale basin, Moon: Impact melts or volcanic eruptions? », Planetary and Space Science, vol. 87,‎ , p. 37–45 (DOI 10.1016/j.pss.2013.09.001, Bibcode 2013P&SS...87...37S)
  44. (en) J. Whitten et al., « Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1 », Journal of Geophysical Research, vol. 116,‎ , E00G09 (DOI 10.1029/2010JE003736, Bibcode 2011JGRE..116.0G09W)
  45. (en) Y. Cho et al., « Young mare volcanism in the Orientale region contemporary with the Procellarum KREEP Terrane (PKT) volcanism peak period 2 b.y. ago », Geophysical Research Letters, vol. 39, no 11,‎ , p. L11203 (DOI 10.1029/2012GL051838, Bibcode 2012GeoRL..3911203C)
  46. (en) Richard Lovett, « Early Earth may have had two moons : Nature News », Nature,‎ (DOI 10.1038/news.2011.456, lire en ligne, consulté le )
  47. (en) Jonti Horner, « Was our two-faced moon in a small collision? », sur The Conversation (consulté le )
  48. a et b (en) « Moon Facts », SMART-1, sur planck.esa.int, European Space Agency, (consulté le )
  49. (en) Wilhelms Don, Geologic History of the Moon, Institut d'études géologiques des États-Unis, (lire en ligne [archive du ] [PDF]), chap. 7 (« Relative Ages »)
  50. (en) William K. Hartmann, Cathy Quantin et Nicolas Mangold, « Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history », Icarus, vol. 186, no 1,‎ , p. 11–23 (DOI 10.1016/j.icarus.2006.09.00, Bibcode 2007Icar..186...11H)
  51. (en) « NASA - Apollo Chronicles: The Mysterious Smell of Moondust », sur www.nasa.gov (consulté le )
  52. (en) Grant Heiken, David Vaniman et Bevan M. French, Lunar Sourcebook, a user's guide to the Moon, New York, Cambridge University Press, , 736 p. (ISBN 978-0-521-33444-0, lire en ligne), p. 736
  53. (en) K.L. Rasmussen et P.H. Warren, « Megaregolith thickness, heat flow, and the bulk composition of the Moon », Nature, vol. 313, no 5998,‎ , p. 121–124 (DOI 10.1038/313121a0, Bibcode 1985Natur.313..121R)
  54. (en-US) Rebecca Boyle, « The moon has hundreds more craters than we thought », sur New Scientist (consulté le )
  55. (en) Emerson J. Speyerer, Reinhold Z. Povilaitis, Mark S. Robinson et Peter C. Thomas, « Quantifying crater production and regolith overturn on the Moon with temporal imaging », Nature, vol. 538, no 7624,‎ , p. 215–218 (PMID 27734864, DOI 10.1038/nature19829, Bibcode 2016Natur.538..215S)
  56. Laurent Sacco, « Lune : les motifs en tourbillon expliqués par des bulles magnétiques », sur Futura (consulté le )
  57. (en) J.L. Margot, D.B. Campbell, R.F. Jurgens et M.A. Slade, « Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations », Science, vol. 284, no 5420,‎ , p. 1658–1660 (PMID 10356393, DOI 10.1126/science.284.5420.1658, Bibcode 1999Sci...284.1658M, CiteSeerx 10.1.1.485.312, lire en ligne)
  58. (en) William R. Ward, « Past Orientation of the Lunar Spin Axis », Science, vol. 189, no 4200,‎ , p. 377–379 (PMID 17840827, DOI 10.1126/science.189.4200.377, Bibcode 1975Sci...189..377W)
  59. a et b (en) Linda M.V. Martel, « The Moon's Dark, Icy Poles », Planetary Science Research Discoveries,‎ , p. 73 (Bibcode 2003psrd.reptE..73M, lire en ligne, consulté le )
  60. (en) Erik Seedhouse, Lunar Outpost : The Challenges of Establishing a Human Settlement on the Moon, Germany, Springer Science+Business Media, coll. « Springer-Praxis Books in Space Exploration », , 300 p. (ISBN 978-0-387-09746-6, lire en ligne), p. 136
  61. (en) Paul Spudis, « The Space Review: Ice on the Moon (page 1) », sur www.thespacereview.com, (consulté le )
  62. (en) W.C. Feldman, S. Maurice, A.B. Binder, B.L. Barraclough et al., « Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles », Science, vol. 281, no 5382,‎ , p. 1496–1500 (PMID 9727973, DOI 10.1126/science.281.5382.1496, Bibcode 1998Sci...281.1496F)
  63. (en) Alberto E. Saal, Erik H. Hauri, Mauro L. Cascio et al., « Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior », Nature, vol. 454, no 7201,‎ , p. 192–195 (PMID 18615079, DOI 10.1038/nature07047, Bibcode 2008Natur.454..192S)
  64. (en) C.M. Pieters, J.N. Goswami, R.N. Clark, M. Annadurai et al., « Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 », Science, vol. 326, no 5952,‎ , p. 568–572 (PMID 19779151, DOI 10.1126/science.1178658, Bibcode 2009Sci...326..568P)
  65. (en) Shuai Li, Paul G. Lucey, Ralph E. Milliken, Paul O. Hayne et al., « Direct evidence of surface exposed water ice in the lunar polar regions », Proceedings of the National Academy of Sciences, vol. 115, no 36,‎ , p. 8907–8912 (PMID 30126996, PMCID 6130389, DOI 10.1073/pnas.1802345115)
  66. (en-US) Kenneth Chang, « Water Found on Moon, Researchers Say », The New York Times,‎ (ISSN 0362-4331, lire en ligne, consulté le )
  67. « Il y a de l'eau sur la Lune ! », sur Libération.fr, (consulté le )
  68. (en) A. Colaprete, K. Ennico, D. Wooden, M. Shirley et al., « Water and More: An Overview of LCROSS Impact Results », 41st Lunar and Planetary Science Conference, vol. 41, no 1533,‎ 1–5 mars 2010 (Bibcode 2010LPI....41.2335C)
  69. (en) Anthony Colaprete, Peter Schultz, Jennifer Heldmann, Diane Wooden et al., « Detection of Water in the LCROSS Ejecta Plume », Science, vol. 330, no 6003,‎ , p. 463–468 (PMID 20966242, DOI 10.1126/science.1186986, Bibcode 2010Sci...330..463C)
  70. (en) Erik Hauri, Thomas Weinreich, Albert E. Saal et Malcolm C. Rutherford, « High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions », Science Express, vol. 10, no 1126,‎ , p. 213–215 (PMID 21617039, DOI 10.1126/science.1204626, Bibcode 2011Sci...333..213H)
  71. a b et c (en) Paul Rincon, « Water ice 'detected on Moon's surface' », BBC News,‎ (lire en ligne, consulté le )
  72. a et b (en) Leonard David, « Beyond the Shadow of a Doubt, Water Ice Exists on the Moon », Scientific American,‎ (lire en ligne, consulté le )
  73. a et b (en) Mike Wall, « Water Ice Confirmed on the Surface of the Moon for the 1st Time! », Science & Astronomy,‎ (lire en ligne, consulté le )
  74. (en) C.I. Honniball et al., « Molecular water detected on the sunlit Moon by SOFIA », Nature Astronomy,‎ (DOI 10.1038/s41550-020-01222-x, lire en ligne, consulté le )
  75. (en) P.O. Hayne et al., « Micro cold traps on the Moon », Nature Astronomy,‎ (DOI 10.1038/s41550-020-1198-9, lire en ligne, consulté le )
  76. « Il y a plus d’eau que prévu sur la Lune », Le Monde.fr,‎ (lire en ligne, consulté le )
  77. (en) P. K. Seidelmann, B. A. Archinal, M. F. A’Hearn et D. P. Cruikshank, « Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2003 », Celestial Mechanics and Dynamical Astronomy, vol. 91, no 3,‎ , p. 203–215 (ISSN 1572-9478, DOI 10.1007/s10569-004-3115-4, lire en ligne, consulté le )
  78. (en) NASA, « A Standardized Lunar Coordinate System for the Lunar Reconnaissance Orbiter and Lunar Datasets », LRO Project and LGCWG White Paper,‎ , p. 13 (lire en ligne)
  79. (en) L. J. Srnka, J. L. Hoyt, J. V. S. Harvey et J. E. McCoy, « A study of the Rima Sirsalis lunar magnetic anomaly », Physics of the Earth and Planetary Interiors, vol. 20, no 2,‎ , p. 281–290 (ISSN 0031-9201, DOI 10.1016/0031-9201(79)90051-7, lire en ligne, consulté le )
  80. (en) D. L. Mitchell, J. S. Halekas, R. P. Lin et S. Frey, « Global mapping of lunar crustal magnetic fields by Lunar Prospector », Icarus, vol. 194,‎ , p. 401–409 (ISSN 0019-1035, DOI 10.1016/j.icarus.2007.10.027, lire en ligne, consulté le )
  81. a et b (en) S. Mighani, H. Wang, D.L. Shuster et C.S. Borlina, « The end of the lunar dynamo », Science Advances, vol. 6, no 1,‎ , eaax0883 (PMID 31911941, PMCID 6938704, DOI 10.1126/sciadv.aax0883, Bibcode 2020SciA....6..883M)
  82. (en) Ian Garrick-Bethell, Benjamin P. Weiss, David L. Shuster et Jennifer Buz, « Early Lunar Magnetism », Science, vol. 323, no 5912,‎ (PMID 19150839, DOI 10.1126/science.1166804, Bibcode 2009Sci...323..356G)
  83. (en) Ian Garrick-Bethell, Benjamin P. Weiss, David L. Shuster, Sonia M. Tikoo et Marissa M. Tremblay, « Further evidence for early lunar magnetism from troctolite 76535 », Journal of Geophysical Research: Planets, vol. 122, no 1,‎ , p. 76-93 (DOI 10.1002/2016JE005154).
  84. (en) L.L. Hood et Z. Huang, « Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations », Journal of Geophysical Research, vol. 96, no B6,‎ , p. 9837–9846 (DOI 10.1029/91JB00308, Bibcode 1991JGR....96.9837H)
  85. a b et c (en) Tim Sharp, « What is the Temperature on the Moon? », sur Space.com, (consulté le )
  86. (en) Arlin P.S. Crotts, « Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data », The Astrophysical Journal, vol. 687, no 1,‎ , p. 692–705 (DOI 10.1086/591634, Bibcode 2008ApJ...687..692C, arXiv 0706.3949, lire en ligne, consulté le )
  87. (en) William Steigerwald, « NASA's LADEE Spacecraft Finds Neon in Lunar Atmosphere », sur NASA, (consulté le )
  88. (en) S. Lawson, W. Feldman, D. Lawrence et K. Moore, « Recent outgassing from the lunar surface: the Lunar Prospector alpha particle spectrometer », Journal of Geophysical Research, vol. 110, no E9,‎ , p. 1029 (DOI 10.1029/2005JE002433, Bibcode 2005JGRE..11009009L)
  89. a et b (en) S. Alan Stern, « The Lunar atmosphere: History, status, current problems, and context », Reviews of Geophysics, vol. 37, no 4,‎ (DOI 10.1029/1999RG900005, Bibcode 1999RvGeo..37..453S, CiteSeerx 10.1.1.21.9994)
  90. (en) « Moon Storms », sur science.nasa.gov, NASA, (consulté le )
  91. (en) Jessica Culler, « LADEE - Lunar Atmosphere Dust and Environment Explorer », sur www.nasa.gov, (consulté le )
  92. (en) Nadia Drake, « Lopsided Cloud of Dust Discovered Around the Moon », sur news.nationalgeographic.com, (consulté le )
  93. (en) M. Horányi, J.R. Szalay, S. Kempf, J. Schmidt et al., « A permanent, asymmetric dust cloud around the Moon », Nature, vol. 522, no 7556,‎ , p. 324–326 (PMID 26085272, DOI 10.1038/nature14479, Bibcode 2015Natur.522..324H)
  94. (en) « NASA: The Moon Once Had an Atmosphere That Faded Away », sur Time (consulté le )
  95. a et b (en) Jonathan Amos, « 'Coldest place' found on the Moon », BBC News,‎ (lire en ligne, consulté le )
  96. (en) « The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment », Icarus, vol. 283,‎ , p. 300–325 (ISSN 0019-1035, DOI 10.1016/j.icarus.2016.08.012, lire en ligne, consulté le )
  97. (en) M. Barboni, Boehnke, P., Keller, C.B., Kohl, I.E. et al., « Early formation of the Moon 4.51 billion years ago », Science Advances, vol. 3, no 1,‎ , e1602365 (PMID 28097222, PMCID 5226643, DOI 10.1126/sciadv.1602365, Bibcode 2017SciA....3E2365B)
  98. (en) A.B. Binder, « On the origin of the Moon by rotational fission », The Moon, vol. 11, no 2,‎ , p. 53–76 (DOI 10.1007/BF01877794, Bibcode 1974Moon...11...53B)
  99. a b et c (en) Rick Stroud, The Book of the Moon, Walken and Company, , 24–27 p. (ISBN 978-0-8027-1734-4)
  100. (en) H.E. Mitler, « Formation of an iron-poor moon by partial capture, or: Yet another exotic theory of lunar origin », Icarus, vol. 24, no 2,‎ , p. 256–268 (DOI 10.1016/0019-1035(75)90102-5, Bibcode 1975Icar...24..256M)
  101. (en) D.J. Stevenson, « Origin of the moon–The collision hypothesis », Annual Review of Earth and Planetary Sciences, vol. 15, no 1,‎ , p. 271–315 (DOI 10.1146/annurev.ea.15.050187.001415, Bibcode 1987AREPS..15..271S)
  102. (en) R. Canup et E. Asphaug, « Origin of the Moon in a giant impact near the end of Earth's formation », Nature, vol. 412, no 6848,‎ , p. 708–712 (PMID 11507633, DOI 10.1038/35089010, Bibcode 2001Natur.412..708C)
  103. (en) G. Jeffrey Taylor, « Origin of the Earth and Moon », sur Planetary Science Research Discoveries, Hawai'i Institute of Geophysics and Planetology, (consulté le )
  104. (en) Nadia Drake, « Asteroids Bear Scars of Moon’s Violent Formation », sur www.nationalgeographic.com,
  105. a et b (en) P.H. Warren, « The magma ocean concept and lunar evolution », Annual Review of Earth and Planetary Sciences, vol. 13, no 1,‎ , p. 201–240 (DOI 10.1146/annurev.ea.13.050185.001221, Bibcode 1985AREPS..13..201W)
  106. (en) Brian W. Tonks et Jay H. Melosh, « Magma ocean formation due to giant impacts », Journal of Geophysical Research, vol. 98, no E3,‎ , p. 5319–5333 (DOI 10.1029/92JE02726, Bibcode 1993JGR....98.5319T)
  107. (en) Raluca Rufu, Oded Aharonson et Hagai B. Perets, « A multiple-impact origin for the Moon », Nature Geoscience,‎ (DOI 10.1038/ngeo2866)
  108. (en) Simon J. Lock, Sarah T. Stewart, Michail I. Petaev et Zoë Leinhardt, « The Origin of the Moon Within a Terrestrial Synestia », Journal of Geophysical Research: Planets, vol. 123, no 4,‎ , p. 910–951 (ISSN 2169-9100, DOI 10.1002/2017JE005333, lire en ligne, consulté le )
  109. a b c d e et f (en) « Misconceptions | About the Moon », sur moon.nasa.gov (consulté le )
  110. (en) « Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels », J. Geophys. Res., vol. 116, no C6,‎ , p. C06025 (DOI 10.1029/2010JC006645, Bibcode 2011JGRC..116.6025H)
  111. (en) V V Belet︠s︡kiĭ, Essays on the Motion of Celestial Bodies, Birkhäuser Verlag,‎ , 372 p. (ISBN 978-3-7643-5866-2, lire en ligne), p. 183
  112. (en) Yu. V Barkin et al., « Cassini's motions of the Moon and Mercury and possible excitations of free librations », Geodesy and Geodynamics, vol. 9, no 6,‎ , p. 474–484 (ISSN 1674-9847, DOI 10.1016/j.geog.2018.01.005, lire en ligne, consulté le )
  113. (en) M. H. M. Morais et A. Morbidelli, « The Population of Near-Earth Asteroids in Coorbital Motion with the Earth », Icarus, vol. 160, no 1,‎ , p. 1–9 (DOI 10.1006/icar.2002.6937, Bibcode 2002Icar..160....1M)
  114. Laurent Sacco, « La Terre aurait une seconde lune temporaire », sur Futura (consulté le )
  115. (en) « A Unique View Of The Moon | Lunar Reconnaissance Orbiter Camera », sur lroc.sese.asu.edu (consulté le )
  116. (en) Dave Mosher, « There is a 'dark side' of the moon, but you are probably using the term incorrectly all of the time », sur Business Insider France, (consulté le )
  117. (en) « Moon used to spin 'on different axis' », BBC,‎ (lire en ligne)
  118. (en) « Space Topics: Pluto and Charon », sur www.planetary.org, The Planetary Society (consulté le )
  119. (en) Tim Sharp, « How Big is the Moon? », sur Space.com, (consulté le )
  120. a b c et d (en) Kurt Lambeck et Stanley Keith Runcorn, « Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences », Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 287, no 1347,‎ , p. 545–594 (DOI 10.1098/rsta.1977.0159, lire en ligne, consulté le )
  121. (en) C. Le Provost, A.F. Bennett et D.E. Cartwright, « Ocean Tides for and from TOPEX/POSEIDON », Science, vol. 267, no 5198,‎ 1995pmid=17745840, p. 639–642 (DOI 10.1126/science.267.5198.639, Bibcode 1995Sci...267..639L)
  122. a b et c (en) Jihad Touma et Jack Wisdom, « Evolution of the Earth-Moon system », The Astronomical Journal, vol. 108,‎ , p. 1943 (DOI 10.1086/117209, lire en ligne, consulté le )
  123. (en) J. Chapront, M. Chapront-Touzé et G. Francou, « A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements », Astronomy and Astrophysics, vol. 387, no 2,‎ , p. 700–709 (DOI 10.1051/0004-6361:20020420, Bibcode 2002A&A...387..700C, lire en ligne, consulté le )
  124. (en) « Why the Moon is getting further away from Earth », BBC News,‎ (lire en ligne)
  125. Ray, « Ocean Tides and the Earth's Rotation » [archive du ], IERS Special Bureau for Tides, (consulté le )
  126. (en) C.D. Murray, Solar System Dynamics, Cambridge University Press, (ISBN 978-0-521-57295-8), p. 184
  127. (en) Terence Dickinson, From the Big Bang to Planet X, Camden East, Ontario, Camden House, , 79–81 p. (ISBN 978-0-921820-71-0)
  128. (en) Gary Latham, Maurice Ewing, James Dorman et David Lammlein, « Moonquakes and lunar tectonism », Earth, Moon, and Planets, vol. 4, nos 3–4,‎ , p. 373–382 (DOI 10.1007/BF00562004, Bibcode 1972Moon....4..373L)
  129. (en) Virgil Drăgușin, Laura Tîrlă, Nicoleta Cadicheanu et Vasile Ersek, « Caves as observatories for atmospheric thermal tides: an example from Ascunsă Cave, Romania », International Journal of Speleology, vol. 47, no 1,‎ (ISSN 0392-6672 et 1827-806X, DOI 10.5038/1827-806X.47.1.2180, lire en ligne, consulté le )
  130. (en) P. Auclair-Desrotour, J. Laskar et S. Mathis, « Atmospheric tides in Earth-like planets », Astronomy & Astrophysics, vol. 603,‎ , A107 (ISSN 0004-6361 et 1432-0746, DOI 10.1051/0004-6361/201628252, lire en ligne, consulté le )
  131. (en) Kristen Minogue, « Folklore Confirmed: The Moon's Phase Affects Rainfall », sur sciencemag.org, .
  132. « Sans la Lune, l'inclinaison de la Terre deviendra chaotique », sur DixQuatre.com, (consulté le )
  133. (en) Jacques Laskar, Philippe Robutel, Frédéric Joutel, Mickael Gastineau, A.C.M. Correia et Benjamin Levrard, A long term numerical solution for the insolation quantities of the Earth (OCLC 785679735, lire en ligne)
  134. a et b Marcel Coquillat, « De l'influence attribuée à la lune sur les végétaux. », Publications de la Société Linnéenne de Lyon, vol. 16, no 3,‎ , p. 59–63 (DOI 10.3406/linly.1947.8346, lire en ligne, consulté le )
  135. a b et c (en) Hal Arkowitz, Scott O. Lilienfeld, « Lunacy and the Full Moon », sur Scientific American (consulté le )
  136. (en) C. Owen, C. Tarantello, M. Jones et C. Tennant, « Lunar cycles and violent behaviour », The Australian and New Zealand Journal of Psychiatry, vol. 32, no 4,‎ , p. 496–499 (ISSN 0004-8674, PMID 9711362, DOI 10.3109/00048679809068322, lire en ligne, consulté le )
  137. (en) James Rotton et I. W. Kelly, « Much ado about the full moon: A meta-analysis of lunar-lunacy research. », Psychological Bulletin, vol. 97, no 2,‎ , p. 286–306 (ISSN 1939-1455 et 0033-2909, DOI 10.1037/0033-2909.97.2.286, lire en ligne, consulté le )
  138. (en) R. Martens, I. W. Kelly et D. H. Saklofske, « Lunar Phase and Birthrate: A 50-Year Critical Review: », Psychological Reports,‎ (DOI 10.2466/pr0.1988.63.3.923, lire en ligne, consulté le )
  139. « Rythmes lunaires et marées gravimétriques dans les traditions forestières et la recherche. », sur www.fao.org (consulté le )
  140. « Jardiner avec la lune : est ce vraiment une bonne idée ? », sur Jardiner Autrement (consulté le )
  141. « La Lune a-t-elle une influence sur les plantes ? - Science & Vie », sur www.science-et-vie.com, (consulté le )
  142. François Ramade, Dictionnaire encyclopédique des sciences de la nature et de la biodiversité, Dunod, (ISBN 978-2-10-053670-2, lire en ligne), p. 582
  143. (en) H. Caspers, « Spawning periodicity and habitat of the palolo worm Eunice viridis (Polychaeta: Eunicidae) in the Samoan Islands », Marine Biology, vol. 79, no 3,‎ , p. 229–236 (ISSN 1432-1793, DOI 10.1007/BF00393254, lire en ligne, consulté le )
  144. (en-US) Sam Wong, « Moonlight helps plankton escape predators during Arctic winters », sur New Scientist (consulté le )
  145. (en) Peter G. K. Kahn et Stephen M. Pompea, « Nautiloid growth rhythms and dynamical evolution of the Earth–Moon system », Nature, vol. 275, no 5681,‎ , p. 606–611 (ISSN 1476-4687, DOI 10.1038/275606a0, lire en ligne, consulté le )
  146. François Rothen, Surprenante gravité, PPUR presses polytechniques, (ISBN 978-2-88074-774-9, lire en ligne), p. 24-25
  147. (en) Donald B. DeYoung, « The Moon: A Faithful Witness in the Sky », Acts & Facts, vol. 8,‎ (lire en ligne)
  148. (en) W. Bruce Saunders et Neil Landman, Nautilus: The Biology and Paleobiology of a Living Fossil, Reprint with additions, Springer Science & Business Media, (ISBN 978-90-481-3299-7, lire en ligne), p. 402
  149. (en) ESO, « Celestial Tic-Tac-Toe: Mercury, Venus and the Moon align », sur www.eso.org (consulté le )
  150. « Owdin.live : La Lune est inversée dans l’hémisphère sud », sur OWDIN, (consulté le )
  151. a et b (en) Jillian Scudder, « Why Does The Moon Look Upside Down From Australia? », sur Forbes (consulté le )
  152. (en-US) UA Little Rock, « October Feature - Tycho Crater », sur ualr.edu, (consulté le )
  153. (en) Maurice Hershenson, The Moon illusion, Routledge, , 472 p. (ISBN 978-0-8058-0121-7), p. 5
  154. « Pourquoi la Lune semble-t-elle beaucoup plus grosse à l'horizon ? », sur www.science-et-vie.com, (consulté le )
  155. « Pourquoi la Lune semble-t-elle plus grosse à son lever ou à son coucher ? », sur Sciences et Avenir (consulté le )
  156. (en) Frank Restle, « Moon Illusion Explained on the Basis of Relative Size », Science, vol. 167, no 3921,‎ , p. 1092–1096 (ISSN 0036-8075 et 1095-9203, PMID 17829398, DOI 10.1126/science.167.3921.1092, lire en ligne, consulté le )
  157. (en) « 22 Degree Halo: a ring of light 22 degrees from the sun or moon », sur ww2010.atmos.uiuc.edu (consulté le )
  158. J. Meeus, « La durée de la lunaison », Ciel et Terre, vol. 76,‎ , p. 21 (ISSN 0009-6709, lire en ligne, consulté le )
  159. Institut de mécanique céleste et de calcul des éphémérides (dir.), Le Manuel des éclipses, Les Ulis, EDP Sciences, , XIII-276 p., 24 cm (ISBN 2-86883-810-3 et 978-2-86883-810-0, OCLC 62878048, BNF 40032811), chap. 3 (« Généralités et définitions »), § 3 (« Les phases de la Lune »), p. 35-37
  160. « La Lune : mouvements et éclipses — CultureSciences-Physique - Ressources scientifiques pour l'enseignement des sciences physiques », sur culturesciencesphysique.ens-lyon.fr (consulté le )
  161. Nicolas Rambaux, « Les phases de la Lune - Description de la face visible de la Lune dans le ciel », sur www.fr.euhou.net
  162. a et b Didier Jamet, « Phases lunaires suivant la position de l'observateur sur la Terre », sur Ciel des Hommes (consulté le )
  163. (en) Jonathan O'Callaghan, « Do you see different phases of the Moon around the world? », sur www.spaceanswers.com
  164. (en) Hanneke Weitering, « Supermoon 2019: When and How to See the Supermoon Trifecta », sur Space.com, (consulté le )
  165. (en) Tony Phillips, « Super Full Moon », sur science.nasa.gov, NASA, (consulté le )
  166. Guillaume Cannat (photogr. Guillaume Cannat), « Une super-Lune cela n'existe pas », Blog : Autour du Ciel,‎ (ISSN 2496-9583, lire en ligne).
  167. (en) Alan Taylor, « Supermoon 2016 - The Atlantic », sur www.theatlantic.com (consulté le )
  168. (en) Rob Garner, « November Supermoon a Spectacular Sight », sur NASA, (consulté le )
  169. (en-US) « "Super Moon" exceptional. Brightest moon in the sky of Normandy, Monday, November 14 | The Siver Times » (consulté le )
  170. (en) « What Is Lunar Perigee and Apogee? », sur www.timeanddate.com (consulté le )
  171. (en) Fred Espenak, « Solar Eclipses for Beginners », sur www.mreclipse.com, MrEclip, (consulté le )
  172. (en) K. Lambeck, « Tidal Dissipation in the Oceans: Astronomical, Geophysical and Oceanographic Consequences », Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 287, no 1347,‎ , p. 545–594 (DOI 10.1098/rsta.1977.0159, Bibcode 1977RSPTA.287..545L)
  173. (en) John Walker, « Moon near Perigee, Earth near Aphelion », sur www.fourmilab.ch, (consulté le )
  174. (en) J. Thieman et Keating, S., « Eclipse 99, Frequently Asked Questions », sur eclipse99.nasa.gov, NASA,
  175. (en) « NASA - Eclipses and the Saros », sur eclipse.gsfc.nasa.gov (consulté le )
  176. (en) Guthrie, D.V., « The Square Degree as a Unit of Celestial Area », Popular Astronomy, vol. 55,‎ , p. 200–203 (Bibcode 1947PA.....55..200G)
  177. (en) « Total Lunar Occultations », sur occsec.wellington.net.nz, Royal Astronomical Society of New Zealand (consulté le )
  178. « Libration lunaire », sur www.futura-sciences.com (consulté le )
  179. (en) « Libration of the Moon », sur epod.usra.edu (consulté le )
  180. a et b (en) « Librations of the Moon », sur pwg.gsfc.nasa.gov (consulté le )
  181. (en) D. H. Eckhardt, « Theory of the libration of the moon », Moon and Planets, vol. 25,‎ , p. 3–49 (DOI 10.1007/BF00911807, lire en ligne, consulté le )
  182. Taylor, « Recent Gas Escape from the Moon », Planetary Science Research Discoveries,‎ , p. 110 (Bibcode 2006psrd.reptE.110T, lire en ligne [archive du ], consulté le )
  183. (en) P.H. Schultz, M.I. Staid et C.M. Pieters, « Lunar activity from recent gas release », Nature, vol. 444, no 7116,‎ , p. 184–186 (PMID 17093445, DOI 10.1038/nature05303, Bibcode 2006Natur.444..184S)
  184. Jean-Baptiste Feldmann, « Les phénomènes lunaires transitoires : un petit pas vers leur explication ? », sur Futura (consulté le )
  185. Nelly Lesage, « La Lune émet d'étranges flashs et on ne sait toujours pas d'où ils viennent », sur Numerama, (consulté le )
  186. (en) Winifred Sawtell Cameron, « Comparative analyses of observations of lunar transient phenomena », Icarus, vol. 16, no 2,‎ , p. 339–387 (ISSN 0019-1035, DOI 10.1016/0019-1035(72)90081-4, lire en ligne, consulté le )
  187. (en) Philip J. Stooke, « Neolithic Lunar Maps at Knowth and Baltinglass, Ireland », Journal for the History of Astronomy, vol. 25,‎ , p. 39–55 (DOI 10.1177/002182869402500103, Bibcode 1994JHA....25...39S)
  188. (en) « Carved and Drawn Prehistoric Maps of the Cosmos », sur www.spacetoday.org, (consulté le )
  189. a et b (en) « Great Moments in Solar Physics 1 », sur www.astro.umontreal.ca (consulté le )
  190. (en) A. Aaboe, J.P. Britton et J.A. Henderson, « Saros Cycle Dates and Related Babylonian Astronomical Texts », Transactions of the American Philosophical Society, vol. 81, no 6,‎ , p. 1–75 (DOI 10.2307/1006543, JSTOR 1006543)
  191. (en-US) John Noble Wilford, « Discovering How Greeks Computed in 100 B.C. (Published 2008) », The New York Times,‎ (ISSN 0362-4331, lire en ligne, consulté le )
  192. (en) J.J. O'Connor et E.F. Robertson, « Anaxagoras of Clazomenae », sur www-history.mcs.st-andrews.ac.uk, University of St Andrews, (consulté le )
  193. (en) Edmund Neison et Edmund Neville Nevill, The Moon and the Condition and Configurations of Its Surface, Longmans, Green, and Company, (lire en ligne), p. 81
  194. a et b (en) Joseph Needham, Mathematics and the Sciences of the Heavens and Earth, vol. 3, Taipei, Caves Books, coll. « Science and Civilization in China », (ISBN 978-0-521-05801-8), p. 227 ; 411–416
  195. (en) Philip Stooke, « Mappemundi and the mirror in the moon », Cartographica: The International Journal for Geographic Information and geovisualization, vol. 29, no 2,‎ , p. 20-30 (ISSN 0317-7173)
  196. (en) C.S. Lewis, The Discarded Image, Cambridge, Cambridge University Press, (ISBN 978-0-521-47735-2, lire en ligne), p. 108
  197. a b c et d (en) « The Galileo Project - Science - Moon », sur galileo.rice.edu (consulté le )
  198. (en) Bartel Leendert van der Waerden, « The Heliocentric System in Greek, Persian and Hindu Astronomy », Annals of the New York Academy of Sciences, vol. 500, no 1,‎ , p. 569 (PMID 3296915, DOI 10.1111/j.1749-6632.1987.tb37193.x, Bibcode 1987NYASA.500....1A)
  199. (en) James Evans, The History and Practice of Ancient Astronomy, Oxford & New York, Oxford University Press, , 386 p. (ISBN 978-0-19-509539-5), p. 71
  200. Plutarque, traduction par D. Richard, Œuvres morales (lire en ligne), « De la face qui apparaît du disque de la Lune »
  201. (en) Paul Coones, « The Geographical Significance of Plutarch's Dialogue, concerning the Face Which Appears in the Orb of the Moon », Transactions of the Institute of British Geographers, vol. 8, no 3,‎ , p. 361–372 (ISSN 0020-2754, DOI 10.2307/622050, lire en ligne, consulté le )
  202. (en) Natacha Fabbri, « The Moon as Another Earth : What Galileo Owes to Plutarch », Galilaeana : journal of Galilean studies : IX, 2012, no IX,‎ (DOI 10.1400/199538, lire en ligne, consulté le )
  203. (en) Université de Saint Andrews, « Aryabhata - Biography », sur mathshistory.st-andrews.ac.uk (consulté le )
  204. Y. Tzvi Langermann, « The Book of Bodies and Distances of Habash al-Hasib », Centaurus, vol. 28, no 2,‎ , p. 111–112 (DOI 10.1111/j.1600-0498.1985.tb00831.x, Bibcode 1985Cent...28..108T)
  205. (en) G. J. Toomer, « Review: Ibn al-Haythams Weg zur Physik by Matthias Schramm », Isis, vol. 55, no 4,‎ , p. 463–465 (DOI 10.1086/349914)
  206. (en) A.I. Sabra, Dictionary of Scientific Biography, Detroit, Charles Scribner's Sons, , « Ibn Al-Haytham, Abū ʿAlī Al-Ḥasan Ibn Al-Ḥasan », p. 195
  207. (en) Reni Taton et Curtis Wilson, Planetary Astronomy from the Renaissance to the Rise of Astrophysics, Part A, Tycho Brahe to Newton, vol. 2, Cambridge University Press, coll. « General History of Astronomy », , 119–126 p. (ISBN 0-521-54205-7)
  208. Whitaker 1999, 3 - Van Langren (Langrenus) and the Birth of Selenography, p. 37–47.
  209. a b c et d (en) Charles A. Wood, « Lunar Hall of Fame », sur skyandtelescope.org, (consulté le )
  210. (en) « Library Item of the Month: Giovanni Riccioli's Almagestum novum », Royal Museums Greenwich, sur www.rmg.co.uk, (consulté le )
  211. (en) Janet Vertesi, « Sicily or the Sea of Tranquility? Mapping and naming the moon », Endeavour, vol. 28, no 2,‎ , p. 64–68 (ISSN 0160-9327, DOI 10.1016/j.endeavour.2004.04.003, lire en ligne, consulté le )
  212. (en) « Moon (1840) - John William Draper », sur www.metmuseum.org (consulté le )
  213. a et b (en) D. Trombino, « Dr John William Draper. », Journal of the British Astronomical Association, vol. 90,‎ , p. 565–571 (ISSN 0007-0297, lire en ligne, consulté le )
  214. (en) « Lunar Theory before 1964 », sur history.nasa.gov (consulté le )
  215. a b et c (en) « Russia's unmanned missions toward the Moon », sur www.russianspaceweb.com (consulté le )
  216. (en) « NASA - NSSDCA - Zond 3 », sur nssdc.gsfc.nasa.gov (consulté le )
  217. (en) « Lunar Rocks and Soils from Apollo Missions », sur curator.jsc.nasa.gov
  218. (en) « Apollo Imagery : AS11-40-5886 (20 July 1969) », sur spaceflight.nasa.gov (consulté le )
  219. (en) « Soldiers, Spies and the Moon: Secret U.S. and Soviet Plans from the 1950s and 1960s », sur nsarchive2.gwu.edu (consulté le )
  220. « ALUNIR : Définition de ALUNIR », sur www.cnrtl.fr (consulté le )
  221. Centre national d'études spatiales, Dictionnaire de spatiologie : sciences et techniques spatiales. Tome 1, Termes et définitions, France, CILF, , 435 p. (ISBN 2-85319-290-3 et 978-2-85319-290-3, OCLC 491093393), p. 22
  222. (en) « 'A Man On The Moon' - The Most Influential Images of All Time », sur 100photos.time.com (consulté le )
  223. « Transmission télévisuelle du premier pas sur la Lune - On a marché sur la lune », Archives de Radio-Canada
  224. (en) « Apollo 11 - Record of Lunar Events », sur history.nasa.gov (consulté le )
  225. (en) « Manned Space Chronology: Apollo11 », sur www.spaceline.org, Spaceline.org (consulté le )
  226. « Apollo Anniversary: Moon Landing "Inspired World" » [archive du ], National Geographic (consulté le )
  227. (en) « Apollo Imagery : AS17-140-21496 (13 Dec. 1972) », sur spaceflight.nasa.gov (consulté le )
  228. (en) Richard W. Orloff, Apollo by the Numbers: A Statistical Reference, Washington, DC, NASA, coll. « The NASA History Series », (1re éd. First published 2000) [détail de l’édition] (ISBN 978-0-16-050631-4, LCCN 00061677, lire en ligne), « Extravehicular Activity »
  229. (en) J. Dickey, P.L. Bender et J.E. Faller, « Lunar laser ranging: a continuing legacy of the Apollo program », Science, vol. 265, no 5171,‎ , p. 482–490 (PMID 17781305, DOI 10.1126/science.265.5171.482, Bibcode 1994Sci...265..482D, lire en ligne, consulté le )
  230. Alexandre Deloménie, Lunokhod 1 reprend du service, Ciel & Espace, juillet 2013.
  231. (en) NASA Solar System Exploration, « Who has Walked on the Moon? », sur solarsystem.nasa.gov (consulté le )
  232. (en) « How Many People Have Been to the Moon? », sur Encyclopedia Britannica (consulté le )
  233. (en) « PIA00434: Clementine Observes the Moon, Solar Corona, and Venus », sur photojournal.jpl.nasa.gov (consulté le )
  234. (en) « Clementine information », sur nssdc.gsfc.nasa.gov, NASA, (consulté le )
  235. (en) « NASA - NASA Instruments Reveal Water Molecules on Lunar Surface », sur www.nasa.gov (consulté le )
  236. (en) « SMART-1 factsheet », sur www.esa.int, European Space Agency, (consulté le )
  237. (en) « KAGUYA (SELENE) Mission Profile », sur www.selene.jaxa.jp/en, JAXA (consulté le )
  238. (en) « KAGUYA (SELENE) World's First Image Taking of the Moon by HDTV », sur www.jaxa.jp, Japan Aerospace Exploration Agency (JAXA), (consulté le )
  239. (en) « Chandrayaan-1 - ISRO », sur www.isro.gov.in (consulté le )
  240. (en) R. Klima, J. Cahill, J. Hagerty et D. Lawrence, « Remote detection of magmatic water in Bullialdus Crater on the Moon », Nature Geoscience, vol. 6, no 9,‎ , p. 737–741 (ISSN 1752-0908, DOI 10.1038/ngeo1909, lire en ligne, consulté le )
  241. (en) « India's Vikram Spacecraft Apparently Crash-Lands on Moon », sur The Planetary Society (consulté le )
  242. a et b (en) Karl Hille, « From a Million Miles: The Moon Crossing the Face of Earth », sur NASA, (consulté le )
  243. (en) « China successfully lands Chang'e-4 on far side of Moon », sur The Planetary Society (consulté le )
  244. (en) Leonard David, « China Outlines New Rockets, Space Station and Moon Plans », sur www.space.com, Space.com, (consulté le )
  245. « Lunar CRater Observation and Sensing Satellite (LCROSS): Strategy & Astronomer Observation Campaign » [archive du ], NASA, (consulté le )
  246. (en) Lunar and Planetary Institute, « Apollo Surface Panoramas », sur www.lpi.usra.edu (consulté le )
  247. (en) « NASA - Hard-nosed Advice to Lunar Prospectors », sur www.nasa.gov (consulté le )
  248. a et b (en-US) Matt Williams, « How Do We Colonize the Moon? », sur Universe Today, (consulté le )
  249. a b et c « Trump veut des Américains sur la Lune en 2024, mais... », sur LExpress.fr, (consulté le )
  250. (en) « CNN.com - Bush unveils vision for moon and beyond », sur www.cnn.com, (consulté le )
  251. a et b (en) Alexandra Witze, « Can NASA really return people to the Moon by 2024? », Nature, vol. 571, no 7764,‎ , p. 153–154 (DOI 10.1038/d41586-019-02020-w, lire en ligne, consulté le )
  252. (en) Tony Reichhardt, « To the Moon by 2024: Here’s the Plan », sur Air & Space Magazine (consulté le )
  253. (en) « NASA - President Barack Obama on Space Exploration in the 21st Century », sur www.nasa.gov (consulté le )
  254. (en) « Obama outlines new NASA strategy for deep space exploration - CNN.com », sur www.cnn.com (consulté le )
  255. (en) « NASA unveiled new plans for getting humans to Mars, and hardly anyone… », sur The Planetary Society (consulté le )
  256. « A quoi va servir (et ressembler) la Station spatiale lunaire internationale », sur Le HuffPost, (consulté le )
  257. (en) « Water Discovery Fuels Hope to Colonize the Moon », sur Space.com, (consulté le )
  258. (en-US) « There’s water on the moon’s sunlit surface. Colonization could be on the horizon. », sur news.northeastern.edu (consulté le )
  259. (en) « Apollo Imagery : AS11-40-5875 (20 July 1969) », sur spaceflight.nasa.gov (consulté le )
  260. « United Nations Treaty Collection - 2. Accord régissant les activités des États sur la Lune et les autres corps célestes », sur treaties.un.org (consulté le )
  261. (en-US) « Moon Express wins U.S. government approval for lunar lander mission », sur SpaceNews, (consulté le )
  262. (en-US) « Executive Order on Encouraging International Support for the Recovery and Use of Space Resources », sur The White House (consulté le )
  263. (en) « Administration Statement on Executive Order on Encouraging International Support for the Recovery and Use of Space Resources », sur www.spaceref.com (consulté le )
  264. (en) « NASA - Ultraviolet Waves », sur science.hq.nasa.gov,
  265. (en) Yuki Takahashi, « Mission Design for Setting up an Optical Telescope on the Moon », sur www.ugcs.caltech.edu, California Institute of Technology, (consulté le )
  266. (en) Joseph Silk, Ian Crawford, Martin Elvis et John Zarnecki, « Astronomy from the Moon: the next decades », Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 379, no 2188,‎ , p. 20190560 (DOI 10.1098/rsta.2019.0560, lire en ligne, consulté le )
  267. (en) David Chandler, « MIT to lead development of new telescopes on moon », MIT News, sur web.mit.edu, (consulté le )
  268. (en) Robert Naeye, « NASA Scientists Pioneer Method for Making Giant Lunar Telescopes », sur www.nasa.gov, Goddard Space Flight Center, (consulté le )
  269. (en) Trudy Bell, « Liquid Mirror Telescopes on the Moon », Science News, sur science.nasa.gov, NASA, (consulté le )
  270. (en) « Science Experiments - Far Ultraviolet Camera/Spectrograph », sur www.lpi.usra.edu
  271. (en) « Apollo Imagery : AS17-134-20500 (11 Dec. 1972) », sur spaceflight.nasa.gov (consulté le )
  272. (en) Debbie Collins, « NASA - Apollo 11 -- First Footprint on the Moon », sur www.nasa.gov (consulté le )
  273. « Un homme sur la Lune ? Non, une “paréidolie” révélée par Google Moon », sur LCI (consulté le )
  274. « Par paréidolie, le Lapin de jade est bien dans la Lune », Le Temps,‎ (ISSN 1423-3967, lire en ligne, consulté le )
  275. a et b (en) Miriam Robbins Dexter, « Proto-Indo-European Sun Maidens and Gods of the Moon », Mankind Quarterly, vol. 25, no 1 & 2,‎ , p. 137–144
  276. (en) Jeremy Black et Anthony Green, Gods, Demons and Symbols of Ancient Mesopotamia: An Illustrated Dictionary, The British Museum Press, [détail de l’édition] (ISBN 978-0-7141-1705-8, lire en ligne), p. 135
  277. (en) W. Zschietzschmann, Hellas and Rome: The Classical World in Pictures, Whitefish, Montana, Kessinger Publishing, (ISBN 978-1-4286-5544-7), p. 23
  278. (en) Beth Cohen, The Colors of Clay: Special Techniques in Athenian Vases, Los Angeles, Getty Publications, , 178–179 p. (ISBN 978-0-89236-942-3, lire en ligne), « Outline as a Special Technique in Black- and Red-figure Vase-painting »
  279. a et b Grand Palais, La Lune, du voyage réel aux voyages imaginaires - Guide d'exposition, (lire en ligne)
  280. a et b (en) « Explained: The crescent in ‘Islamic’ flags », sur The Indian Express, (consulté le )
  281. a b c d e et f Anne Broise, « Images des mathématiques - Calendriers et fractions continues », sur images.math.cnrs.fr, (consulté le )
  282. (en) A.S. Brooks et C.C. Smith, « Ishango revisited: new age determinations and cultural interpretations », The African Archaeological Review,‎ , p. 65–78
  283. (en) David Ewing Duncan, The Calendar, Fourth Estate Ltd., , 10–11 p. (ISBN 978-1-85702-721-1)
  284. « Le calendrier juif ou hébraïque », sur www.futura-sciences.com (consulté le )
  285. P. Rocher, « Le calendrier traditionnel chinois », sur www.imcce.fr
  286. (en) « Islamic Calendars based on the Calculated First Visibility of the Lunar Crescent », sur www.staff.science.uu.nl, Université d'Utrecht (consulté le )
  287. Abd-al-Haqq Guiderdoni, « Et si l’on regardait le ciel pendant la Nuit du doute ? », sur SaphirNews.com, (consulté le )
  288. (en) Robert K. Barnhart, The Barnhart Concise Dictionary of Etymology, Harper Collins, , 944 p. (ISBN 978-0-06-270084-1), p. 487
  289. (en) A. R. (Trans.) Birley, Agricola and Germany, États-Unis, Oxford University Press, , 224 p. (ISBN 978-0-19-283300-6, lire en ligne), p. 108
  290. (en) J. P. Mallory et D. Q. Adams, The Oxford Introduction to Proto-Indo-European and the Proto-Indo-European World, New York, Oxford University Press, coll. « Oxford Linguistics », , 98, 128, 317 (ISBN 978-0-19-928791-8, lire en ligne)
  291. (en) William George Smith, Dictionary of Greek and Roman Biography and Mythology: Oarses-Zygia, vol. 3, J. Walton, (lire en ligne), p. 768
  292. (la) Henri Estienne, Thesaurus graecae linguae, vol. 5, Didot, (lire en ligne), p. 1001
  293. a b et c A. Rey, M. Tomi, T. Hordé et C. Tanet, Dictionnaire historique de la langue française, Paris, Dictionnaires Le Robert, (réimpr. 2011), 4e éd. (1re éd. 1992), 1 vol., XIX-2614, 29 cm (ISBN 978-2-84902-646-5 et 978-2-84902-997-8, BNF 42302246, SUDOC 147764122, lire en ligne), PT11446.
  294. F. Gaffiot, Dictionnaire illustré latin-français, Paris, Hachette, , 1re éd., 1 vol., 1702-XVIII, ill., gr. in-8o (26 cm) (OCLC 798807606, BNF 32138560, SUDOC 125527209, lire en ligne), s.v.1 lūna (sens 1), p. 927, col. 1 (lire en ligne).
  295. A. Le Bœuffle, Les noms latins d'astres et de constellations (texte remanié de la thèse de doctorat ès lettres soutenue à l'université Paris-IV – Sorbonne en ), Paris, les Belles Lettres, coll. « Études anciennes » (no 23), (réimpr. 2010), 1re éd., 1 vol., XIV-290-[2], 16 × 24,2 cm (OCLC 373532853, BNF 34590992, Bibcode 1977lnld.book.....L, SUDOC 000161268, présentation en ligne, lire en ligne), p. 57.
  296. « LUNE : Définition de LUNE », sur www.cnrtl.fr (consulté le )
  297. (de) W. v. Wartburg, Französisches etymologisches Wörterbuch (FEW) : eine Darstellung des galloromanischen Sprachschatzes [« Dictionnaire étymologique français : une représentation du trésor lexical galloroman »], t. V : J – L, fasc. 50, Bâle, Helbing et Lichtenhahn, (réimpr. 1971), 1re éd., 1 vol., III-493, 26 cm (OCLC 491255708, BNF 37702211, SUDOC 047004037), s.v.lūna (sens I.1.a.), p. 446, col. 1 (lire en ligne).
  298. X. Delamarre, Le vocabulaire indo-européen : lexique étymologique thématique, Libr. d'Amérique et d'Orient, (ISBN 2-7200-1028-6 et 978-2-7200-1028-6, OCLC 13524750, lire en ligne)
  299. (en) Michiel Arnoud Cor de Vaan, Etymological dictionary of Latin and the other Italic languages, Brill, (ISBN 978-90-04-16797-1, 90-04-16797-8 et 978-90-04-32189-2, OCLC 225873936), p. 354
  300. Varron, La langue latine (BNF 12425965), liv. V, 68.
  301. Cicéron, La nature des dieux (BNF 14406499), liv. II, 27, 68.
  302. (en) Richard L. Gordon, Angeli Bertinelli et Maria Gabriella, « Luna », sur Brill's New Pauly, Antiquity (DOI 0.1163/1574-9347_bnp_e711910).
  303. Félix Gaffiot, Dictionnaire Gaffiot, s.v.lūcĕo (sens 1), p. 923, col. 1 (lire en ligne).
  304. « VOCABULAIRE LUNAIRE », Le Monde.fr,‎ (lire en ligne, consulté le )
  305. Dictionnaire de l'astronomie, Encyclopaedia Universalis, , 1005 p. (ISBN 978-2-226-10787-9, OCLC 299636121), p. 594.
  306. Alice Develey, « L'histoire secrète des jours de la semaine », sur www.lefigaro.fr, (consulté le )
  307. (en-US) « Which National Flags Feature The Moon In Their Designs? », sur WorldAtlas (consulté le )
  308. (en) « Crescent Moon Symbol on National Flags », sur www.learnreligions.com (consulté le )
  309. a et b (en-US) « 64 countries have religious symbols on their national flags », sur Pew Research Center (consulté le )
  310. a b et c « Playlist : On a marché sur la Lune », sur Les Inrockuptibles, (consulté le )
  311. a et b « Quelle playlist écouter pour contempler la Lune? », sur www.20minutes.fr (consulté le )
  312. Aliette de Laleu, « La playlist classique au clair de lune », sur France Musique, (consulté le )
  313. a et b « La Lune en 10 chansons », sur www.thalesgroup.com (consulté le )
  314. (en) « The Moon and music », sur Royal Museums Greenwich, (consulté le )
  315. « Ces artistes et leurs chansons inspirés par les mystères de la Lune », sur rts.ch, (consulté le )
  316. « La Lune à travers les mots des poètes », sur lanouvellerepublique.fr, (consulté le )
  317. « Claude Debussy : cinq choses à savoir sur le précurseur de la musique moderne », sur Franceinfo, (consulté le )
  318. a b et c (en) « Hey, Moon: Lunar Art Through the Ages », sur www.mutualart.com (consulté le )
  319. (en) « The moon in art | Art UK », sur artuk.org (consulté le )
  320. a b c d e et f (en) David Seed, « Moon on the mind: two millennia of lunar literature », Nature, vol. 571, no 7764,‎ , p. 172–173 (DOI 10.1038/d41586-019-02090-w, lire en ligne, consulté le )
  321. « Lucien de Samosate ou la science-fiction à l'antique », Le Monde.fr,‎ (lire en ligne, consulté le )
  322. a et b « La proto-science-fiction », sur Dans la Lune, (consulté le )
  323. William Poole, « Le Songe de Kepler et L’Homme dans la lune de Godwin : naissances de la science-fiction 1593-1638 », dans La figure du philosophe dans les lettres anglaises et françaises, Presses universitaires de Paris Nanterre, coll. « Littérature française », (ISBN 978-2-8218-2677-9, DOI 10.4000/books.pupo.995, lire en ligne), p. 73–86
  324. a et b « Huit œuvres de science-fiction qui ont exploré la face cachée de la Lune », Le Monde.fr,‎ (lire en ligne, consulté le )
  325. « Jules Verne - De la Terre à la Lune - Autour de la Lune », sur lesia.obspm.fr (consulté le )
  326. (en) Carlo Pagetti et Marie-Christine Hubert, « "The First Men in the Moon:" H.G. Wells and the Fictional Strategy of His "Scientific Romances" ("Les Premiers Hommes dans la Lune:" H.G. Wells et la stratégie narrative du roman scientifique) », Science Fiction Studies, vol. 7, no 2,‎ , p. 124–134 (ISSN 0091-7729, lire en ligne, consulté le )
  327. (en) John Milstead, « Bedford Vindicated: A Response to Carlo Pagetti on "The First Men in the Moon" », Science Fiction Studies, vol. 9, no 1,‎ , p. 103–105 (ISSN 0091-7729, lire en ligne, consulté le )
  328. a b et c (en) Alissa Wilkinson, « 9 terrific movies about landing on the moon, from the sublime to the ridiculous », sur Vox, (consulté le )
  329. a b et c « La Lune au cinéma, entre fascination, enjeux géopolitiques et désintérêt au profit de lointaines galaxies », sur Télérama (consulté le )
  330. a b et c (en-US) Joe Morgenstern, « For the Moon Landing Anniversary, the Best Moon Movies », Wall Street Journal,‎ (ISSN 0099-9660, lire en ligne, consulté le )
  331. « La preuve qu'avec "2001 : L'Odyssée de l'espace", Kubrick avait prévu le futur », sur Les Inrockuptibles, (consulté le )

Voir aussi

Articles connexes

Sur les autres projets Wikimedia :

La Terre prise par le LRO en 2015.

Bibliographie

Liens externes