Lumière

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Lumière (homonymie).

La lumière est l'ensemble des ondes électromagnétiques visibles par l'œil humain, c'est-à-dire dont les longueurs d'onde sont comprises entre 380 nm (violet) et 780 nm (rouge). La lumière visible est intimement liée à la notion de couleur. C'est Isaac Newton qui propose pour la première fois au XVIIe siècle un cercle des couleurs chromatiques[1] fondé sur la décomposition de la lumière blanche. Elle peut se mesurer en lux.

La particule associée à la lumière visible est le photon, qui se déplace à 299 792,458 km/s dans le vide.

Par extension, on appelle parfois « lumière » d'autres ondes électromagnétiques, telles que celles situées dans les domaines infrarouge et ultraviolet[2].

Lumière perçue dans le noir.

Propagation et perception[modifier | modifier le code]

La lumière se déplace en ligne droite dans tout milieu transparent homogène, en particulier le vide ou l'air. Elle peut en revanche changer de trajectoire lors du passage d'un milieu à un autre. Dans le vide, la lumière se déplace à une vitesse strictement fixe et moins vite dans les autres milieux. L'affirmation « la vitesse de la lumière est constante », n'a de sens que « dans le vide », ce qui est souvent sous-entendu. La lumière est un peu plus lente dans l'air, et notablement plus lente dans l'eau. Le principe de Fermat ou les lois de Descartes permettent de déduire les changements de trajectoire de la lumière lorsqu'elle passe d'un milieu à l'autre en fonction de sa vitesse dans chacun des milieux.

La lumière peut d'ailleurs être décomposée (les faisceaux prennent des directions différentes selon leur longueur d'onde, et donc selon leur couleur pour la lumière visible) en traversant différents milieux transparents, car la vitesse peut dépendre de la fréquence. La lumière n'est perçue par un récepteur que si elle va directement dans sa direction.

Couleur[modifier | modifier le code]

On prête plusieurs sens au mot « couleur ». L'un d'eux veut qu'une couleur corresponde à une lumière pure, d'une seule longueur d'onde. Une autre définition qualifie de couleur toute apparence obtenue par dosage des différentes lumières. Si le bleu est une couleur dans tous les cas, le blanc (réunion de toutes les longueurs d'ondes, ou de longueurs d'onde bien choisies), le magenta (réunion de rouge et de bleu) et le noir (aucune lumière) ne sont des couleurs que suivant la seconde définition.

Représentations[modifier | modifier le code]

Article connexe : Dualité onde-corpuscule.

Histoire des représentations et de l'étude de la lumière[modifier | modifier le code]

De l'antiquité à la Renaissance[modifier | modifier le code]

Ibn Al Haytham (965 - 1039), de son nom latinisé Alhazen, est un savant perse souvent considéré comme le père moderne de l'optique, de la physique expérimentale et de la méthode scientifique[3],[4],[5],[6]. Il peut être vu comme un des premiers physiciens théoriques[4]. Il a notamment travaillé sur des expérimentations révélant que la lumière se propage en ligne droite et sur diverses applications tel que: le comportement des miroirs, la réfraction et la vision humaine. Une traduction latine d'une partie de ses travaux, le Traité d'optique[7], a exercé une grande influence sur la science occidentale.

Galilée, Descartes, Grimaldi[modifier | modifier le code]

Newton[modifier | modifier le code]

Huygens[modifier | modifier le code]

Comportement ondulatoire[modifier | modifier le code]

En 1678, Christian Huygens propose une théorie ondulatoire de la lumière, publiée en 1690 dans son Traité de la Lumière. Thomas Young expérimente en 1801 la diffraction et les interférences de la lumière. En 1821, Augustin Fresnel énonce que la conception ondulatoire de la lumière est seule capable d’expliquer de façon convaincante tous les phénomènes de polarisation en établissant la nature transversale des ondes lumineuses et en 1850, Léon Foucault fait prévaloir la théorie ondulatoire sur la théorie corpusculaire newtonienne avec son expérience sur la vitesse de propagation de la lumière. Il faudra attendre les travaux de James Clerk Maxwell pour expliquer le phénomène ondulatoire : il publie en 1873 un traité sur les ondes électromagnétiques, définissant la lumière comme une onde qui se propage sous la forme d'un rayonnement, le spectre de ce rayonnement n'étant qu'une partie de l'ensemble du rayonnement électromagnétique, beaucoup plus large : infrarouge, ultraviolet, ondes radio, rayons X… Comme déjà dit, on peut qualifier ces rayonnements de lumière au sens large, ou alors restreindre le mot « lumière » à la lumière visible (« lumière visible » devient alors un pléonasme).

Les équations de Maxwell permettent de développer une théorie générale de l'électromagnétisme. Elles permettent donc d'expliquer aussi bien la propagation de la lumière que le fonctionnement d'un électroaimant. Pour les cas simples, les lois de l'optique géométrique décrivent bien le comportement des ondes (on démontre que ces lois sont un cas particulier des équations de Maxwell). Cette description classique est la plus utilisée pour expliquer la propagation de la lumière, y compris des phénomènes compliqués comme la formation d'un arc-en-ciel ou les fentes de Young.

Comportement corpusculaire[modifier | modifier le code]

Newton avait développé une théorie purement corpusculaire de la lumière. Elle est rejetée avec la mise en évidence de phénomènes d'interférence (dans certains cas, additionner deux sources de lumière donne de l'obscurité, ce qui n'est pas explicable par une théorie corpusculaire).

La physique du XXe siècle a montré que l'énergie transportée par la lumière est quantifiée. On appelle photon le quantum d'énergie (la plus petite quantité d'énergie, indivisible), qui est aussi une particule. L'existence de cette particule ne contredit pas la théorie ondulatoire, au contraire : la dualité onde-particule (ou onde-corpuscule) en mécanique quantique dit qu'à chacune des particules est associée une onde. Finalement, si on considère le déplacement d'un unique photon, les points d'arrivée possibles sont donnés sous forme de probabilités par l'onde associée. Sur un très grand nombre de photons, chaque lieu d'arrivée est illuminé avec une intensité proportionnelle à la probabilité… ce qui correspond au résultat de la théorie classique.

Vitesse[modifier | modifier le code]

Article détaillé : vitesse de la lumière.

En 1670, Ole Christensen Rømer mesure indirectement la vitesse de la lumière en observant les décalages de l'orbite de Io par rapport aux prévisions. Plus tard en 1849, Hippolyte Fizeau mesure directement la vitesse de la lumière avec un faisceau réfléchi par un miroir lointain et traversant une roue dentée. La vitesse de la lumière dans le vide, notée c (comme célérité), est une constante de la physique. Cette propriété a été induite de l'expérience d'interférométrie de Michelson et Morley et a été clairement énoncée par Albert Einstein en 1905.

C'est la vitesse maximale permise pour tout déplacement de tout ce qui transporte de l'information ou de l'énergie, conformément à la théorie de la relativité. D'autres unités sont définies à partir de la vitesse de la lumière (cf. infra). En particulier le mètre est défini de telle sorte que la vitesse de la lumière dans le vide vaille 299 792 458 m/s. De ce fait, la vitesse de la lumière est exacte, car elle ne dépend plus d'une mesure (imprécise et susceptible de changement avec des progrès de mesure).

Addition des vitesses et célérité[modifier | modifier le code]

La loi d'addition des vitesses v' = V+v est à peu près vraie pour des vitesses faibles par rapport à la vitesse de la lumière. Du point de vue de la physique classique, un voyageur marchant dans un train a, par rapport au sol, une vitesse égale à celle du train plus (vectoriellement) sa propre vitesse de marche dans le train. Et l'on écrit d = (V+v) t = Vt +vt = la distance parcourue par le train + la distance parcourue dans le train = la distance parcourue par le voyageur par rapport au sol dans le temps t qui est classiquement le même dans le train et, ce qui implique la loi classique d'addition des vitesses. Ceci n'est qu'une approximation, qui devient de moins en moins précise à mesure que la vitesse v considérée augmente.

Un photon va à la même vitesse c que ce soit par rapport au sol ou par rapport au train ! La loi d'addition des vitesses n'est qu'une approximation de la loi dite de transformation sur les vitesses de Lorentz (appelée parfois d'addition des vitesses, ou plus correctement loi de composition des vitesses). Ce résultat est l'une des caractéristiques de la relativité restreinte ; la loi de composition des vitesses issue des transformations mathématiques de Lorentz donne à la limite des faibles vitesses (par rapport à la vitesse c) les mêmes résultats que les transformations de Galilée.

Dans les matériaux[modifier | modifier le code]

La vitesse de la lumière n'est pas toujours la même dans tous les milieux et dans toutes les conditions. Les écarts de vitesse observés entre deux milieux sont liés à l'indice de réfraction, qui caractérise les réponses des milieux à la traversée d'une onde électromagnétique.

L'écart entre la vitesse de la lumière dans le vide et la vitesse de la lumière dans l'air est très faible (moins de 1%), ce qui a permis de parler en général de vitesse de la lumière au lieu de vitesse de la lumière dans le vide. Cependant, dans la matière condensée, une onde lumineuse peut être considérablement ralentie (par exemple, de 25% dans l'eau[8]). Les physiciens sont même parvenus à ralentir la propagation lumineuse jusqu'à une vitesse de quelques mètres par seconde dans des cas extrêmes[9].

Dans le Système International (SI)[modifier | modifier le code]

Actuellement, la plupart des unités du système international sont définies à partir de la célérité de la lumière. Une vitesse étant le quotient d'une longueur par une durée, on peut donc définir une distance comme étant le produit d'une durée par une vitesse (en l'occurrence c), ou une durée comme la division d'une distance par c.

La seconde est définie dans le système international par un phénomène lumineux : c'est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyper-fins de l'état fondamental de l'atome de césium 133.

Le mètre, unité du système international de longueur. De nos jours, il est défini comme la distance parcourue par la lumière, dans le vide, en 1/299 792 458 de seconde. Il s'agit là d'une définition conventionnelle, car toute évolution dans la définition de la seconde aurait une incidence directe sur la longueur du mètre. Avec la définition actuelle de la seconde, le mètre est donc égal à

 \frac{9\;192\;631\;770}{299\;792\;458} fois la longueur d'onde de la radiation choisie.

On peut également dire que la vitesse de la lumière dans le vide est précisément 299 792 458 m·s-1 : il n'y a pas la moindre incertitude sur cette valeur, l'incertitude ne résidant que dans la définition de la seconde[10].

Le mètre, avec ses sous-multiples ou multiples (millimètre, kilomètre), est très pratique pour mesurer les distances sur la Terre ; par contre pour les astronomes, il est trop court et peu adapté (puisque les astronomes n'observent pratiquement que de la lumière). En effet, la Lune, l'astre le plus proche de nous, est à environ 380 000 000 mètres de nous et le Soleil, l'étoile la plus proche, est à environ 150 000 000 000 mètres. Avec le principe décrit précédemment (distance = c x durée), l'année-lumière est définie comme la distance que la lumière parcourt en un an. Ainsi le Soleil n'est qu'à 8,32 minutes-lumière de nous ; et la Lune est seulement à un peu plus d'une seconde-lumière. L'année-lumière vaut exactement 9 460 730 472 580 800 mètres (soit environ dix millions de milliards de mètres, soit 1016 m).

En pratique[modifier | modifier le code]

Monochromatisme et polychromatisme[modifier | modifier le code]

La lumière est constituée d'ondes électromagnétiques. De manière générale, une onde est caractérisée par sa longueur d'onde et sa phase. La longueur d'onde correspond à la couleur de la lumière. Ainsi, une lumière constituée d'ondes de la même longueur d'onde, est dite monochromatique. Si en plus toutes les ondes ont la même phase, alors la lumière est cohérente : c'est ce qui se passe dans un laser.

Mesure[modifier | modifier le code]

En matière de mesure de la lumière, il importe de bien définir de quoi on parle :

La mesure de la lumière est compliquée par le fait qu'on s'intéresse, en pratique, à la lumière visible, alors que la perception humaine dépend de la longueur d'onde : cf. luminance et chrominance.

Lumières célestes[modifier | modifier le code]

Le Soleil et plus généralement les étoiles produisent plus de rayonnement qu'ils n'en reçoivent. La Lune, et plus généralement les petits corps célestes (les planètes et leurs satellites, les astéroïdes, les comètes, etc.), produisent moins de rayonnement qu'ils n'en reçoivent. Certaines planètes géantes (comme Jupiter ou Saturne) produisent un peu plus de rayonnement qu'elles n'en reçoivent, mais pas suffisamment pour être facilement visibles à l'œil nu depuis la Terre. Dans les deux cas, ces corps sont lumineux par réflexion de la lumière du Soleil.

Les étoiles filantes, quant à elles, sont échauffées par la friction avec l'air et finissent par y brûler. Ce phénomène est source de lumière.

Lumières chimiques[modifier | modifier le code]

Certains organismes vivants : poissons, mollusques, lucioles et vers luisants, sont le siège de réactions chimiques productrices de lumières. Les chauffages intenses, donc les combustions en général, le feu, les feux-follets, produisent de la lumière liquide (lampes à huile, à pétrole, ou à gaz) et solide (bougies, chandelle (chandelier), cierge).

Les lumières électriques sont les sources les plus courantes de lumière actuellement : lampadaires, spots, phares, lampes-torches, etc., elles peuvent utiliser un phénomène de chauffage ou un phénomène quantique. L'ampoule électrique (« lampe à incandescence ») a révolutionné la vie quotidienne. La source de lumière provient de l'incandescence d'un filament lumineux. Le tube fluorescent, la diode électroluminescente sont des lumières électriques, ainsi que le tube cathodique qui emploie la technique d'un bombardement d'électrons.

Lumières quantiques[modifier | modifier le code]

La fluorescence, les lasers, les lampes à vapeur de mercure ou de sodium, les plasmas tels que ceux produits par les éclairs dans les orages, produisent de la lumière issue de phénomènes quantiques au cœur des atomes : l'excitation des électrons (« pompage optique »), peut être obtenu par excitation, puis désexcitation de ces électrons, qui en retournant à leur niveau d'énergie habituel, émettent des photons (lumière).

Autres lumières[modifier | modifier le code]

  • La phosphorescence est une source naturelle de lumière, de faible intensité.
  • Les étincelles sont le produit d'une intense friction sur certains matériaux.
  • L'émission de lumière due au frottement, ou triboluminescence, n'est pas d'origine thermique et elle ne se produit qu'avec des isolants électriques.
  • Certains animaux et champignons sont capables de produire une lumière froide d'origine biochimique : en particulier des animaux nocturnes tels que différentes espèces de lucioles ; ou des animaux marins des grandes profondeurs ; ainsi que, en surface, certaines espèces de plancton.

Physiologie[modifier | modifier le code]

Article détaillé : Œil humain.

Les différents facteurs qui déterminent l’absorption optique des molécules pigmentaires (bleu, vert–jaune, orange–rouge) dans les trois types de cônes et de bâtonnets sont au centre des préoccupations de la photométrie. La perception des couleurs est rendue possible par l’étroit spectre d’absorption des pigments des cônes. Les bâtonnets quant à eux rendent compte de l’intensité lumineuse. Ils possèdent un pigment nommé molécule rhodopsine (ou pourpre rétinienne) ayant un spectre d’absorption plus large. Ils sont plus sensibles que les cônes.

D'un point de vue physiologique, l'effet de couleur est dû aux différents degrés d’absorption des pigments des cônes. La perception des différentes couleurs correspond aux différents domaines du spectre lumineux. Lorsque certaines longueurs d’ondes de la lumière sont absorbées, les domaines qui restent donnent alors une impression de couleur. Ainsi, une feuille verte n’absorbe-t-elle pas le domaine « vert » des longueurs d’ondes, mais les autres qui lui sont complémentaires : le « rouge » (680 nm) et le « bleu » (430 nm).

La lumière telle qu’elle est connue dans le monde est un mélange de différentes longueurs d’ondes. Grâce à un réseau de diffraction ou prisme on peut décomposer la lumière polychromatique (multicolore) en différentes fréquences monochromatiques (unies). Chacun des composants monochromatiques de la lumière correspond à une perception spécifique de l’œil humain : les couleurs du spectre ou de l’arc-en-ciel. Les transitions entre les différentes couleurs sont floues. Leur perception est subjective et dépend de la tradition et de la langue. Les mots utilisés pour désigner les couleurs en témoignent.

Chaque domaine de couleur particulier peut être décomposé en différentes nuances. La zone intercalaire entre le bleu et le vert s’appelle le turquoise ou le cyan. D’autres couleurs comme le marron par exemple résultent de la superposition de plusieurs longueurs d’ondes (mélange additif des couleurs) ou proviennent d’un mélange soustractif des couleurs de la lumière obtenu par filtration de la lumière blanche (la somme de toutes les couleurs).

Les ondes électromagnétiques dépassant les frontières du visible chez l’être humain : celles de fréquence supérieure au violet sont désignées jusqu’à une certaine limite par le terme d'ultra-violets ou U.V. ; celles qui sont de fréquence inférieure au rouge sont appelées infra-rouges. La largeur de bande de la lumière visible par les animaux peut varier considérablement par rapport aux capacités visuelles des êtres humains.

Phénomènes optiques[modifier | modifier le code]

Les phénomènes optiques peuvent notamment inclure : diffraction, diffusion, interférences, réflexion, réfraction et lentille gravitationnelle.

Observations en astronomie[modifier | modifier le code]

Les observations astronomiques ont été réalisées depuis que l'homme existe : on aperçut des lumières dans le ciel : le Soleil, la Lune, des étoiles au firmament, des étoiles filantes… et l'on se rendit compte que cela gouvernait le cycle des journées (alternance journuit), et le cycle des saisons (durée du jour tout au long de l'année). Le feu produisait également de la lumière. Dans la représentation du monde des Grecs, le feu (Soleil) était l'un des quatre éléments fondamentaux, puisque l'on se rendit compte que la combustion produisait une lumière comparable au phénomène observé en provenance du Soleil ou des étoiles.

L'astronomie moderne apparaît lorsque Galilée, ayant découvert le secret de la lunette hollandaise (inventée à la fin du XVIe siècle), en améliore les performances pour l'utiliser en astronomie (voir lunette astronomique). La photographie permet aussi de fixer sur le papier les images obtenues par les télescopes, ce qui en rend la diffusion beaucoup plus aisée. Au XXe siècle, on applique les théories électromagnétiques à l'observation astronomique : après la Seconde Guerre mondiale, on met au point des télescopes qui recueillent les ondes électromagnétiques dans le spectre radio, les radiotélescopes, ainsi que des télescopes observant les infrarouges ou les ultraviolets. Cela présentait l'avantage de permettre de découvrir de nouveaux objets célestes. Ainsi naquit la radioastronomie. On emploie aussi maintenant des télescopes spatiaux pour éviter la pollution atmosphérique.

Actuellement, les astronomes font moins d'« observations » à l'œil nu. Les astronomes amateurs continuent néanmoins d'observer le ciel avec des lunettes astronomiques, basées sur un système de lentilles, qui sont dans leur principe équivalentes à celle qu'employa Galilée à partir de 1609, ou avec des télescopes, basés sur un système de miroirs, qui sont dans leur principe équivalents à celui que présenta Isaac Newton en 1672 à la Royal Society (à noter toutefois l'évolution notable du télescope de type Cassegrain et de ses variantes).

Vie et santé[modifier | modifier le code]

Même si certaines formes de vies au fond des océans peuvent s'en passer, la lumière du soleil est la première source d'énergie des écosystèmes terrestres, via la photosynthèse. Elle contrôle donc les cycles écogéobiologiques et le stockage « fossile » du carbone tels qu'ils existent depuis 3,7 milliards d'années. Elle joue aussi un rôle important en entretenant la couche d'ozone et en limitant la pullulation des microbes sensibles aux ultra-violets et/ou à l'infrarouge. Cette sensibilité est utilisée par certaines techniques de stérilisation[11].

Inversement, elle contribue à certaines formes de pollution dites « photochimiques » (ozone troposphérique, oxydes d'azote) et inversement à dégrader (photodégradation) certains polluants de l'air, du sol superficiel ou de l'eau (certains pesticides présents dans l'air) par exemple. C'est encore la lumière qui via la durée du jour corrige les horloges biologiques animales, par la production de mélatonine qui est une hormone uniquement produite la nuit, chez la plupart des animaux et chez d'autres espèces. Chez les plantes, la durée du jour contrôle aussi, avec la température, l'apparition des bourgeons, feuilles, fleurs, ou l'ouverture ou la fermeture de fleurs. C'est pourquoi la présence de lumière artificielle dans l'environnement nocturne peut altérer le comportement ou les fonctions de certaines espèces ou des écosystèmes ; phénomène généralement décrit sous le nom de « pollution lumineuse ».

Chez la plupart des espèces la lumière naturelle est vitalement nécessaire au bon accomplissement des cycles biologiques. Chez l'homme on peut produire ou soigner une dépression par l'absence ou la présence de lumière. Les UV de la lumière solaire sont nécessaires à la synthèse de la vitamine D. Il a été démontré en 2008[12] que la prise de mélatonine et l'exposition à la lumière naturelle améliorent les symptômes de troubles des cycles du sommeil ; la prise de mélatonine facilite l'endormissement (huit minutes plus tôt en moyenne) et allonge le sommeil de vingt-sept minutes en moyenne. L'exposition à la lumière naturelle diminuerait aussi chez ces malades : les symptômes de dépression (-19 %), les limitations fonctionnelles au quotidien (- 53 %) et la détérioration cognitive (- 5 %). L'association lumière + mélatonine a aussi diminué les comportements agressifs (- 9 %), les phases d'agitation et de réveils nocturnes.

Le Dr. Albert Lachman (spécialiste des troubles du sommeil) estime[13] qu'en améliorant le sommeil du malade, ses fonctions cognitives et l'humeur sont améliorées. Il conseille « de bien éclairer les pièces en journée, de laisser les rideaux ouverts et, à l'inverse, de diminuer les sources de lumière en soirée pour que l'organisme reçoive le signal que la nuit est là […] Malheureusement, dans certaines maisons de repos, pour des questions d'organisation, on fait plutôt l'inverse » ajoute-t-il[13].

Symbolisme[modifier | modifier le code]

La lumière semble avoir fait l'objet d'une interprétation symbolique dès que les hommes se sont mis à croire dans un au-delà. Depuis la possible déification du feu, devenu élément vital pour l'Homme préhistorique, puis l'un des quatre éléments de la philosophie de la Grèce antique, jusqu'à la théologie chrétienne de Dieu comme "lumière des lumières", l'illumination étant présente dans de nombreuses religions, on n'a eu de cesse que de lui accorder des origines et vertus surnaturelles.

Ses symboles sont universels et se déclinent sous des formes multiples :

Les philosophes ont utilisé cette symbolique ; Ainsi, Descartes affirmait-il dans les Principes de la philosophie (1644), que l'on pouvait s'appuyer sur les lumières naturelles, sans les lumières de la foi, ce même Descartes s'étant intéressé de près à l'optique (la Dioptrique, 1637). C'était à l'époque où l'on a admis que la Terre tournait autour du Soleil (voir Révolution copernicienne, ce qui a constitué un bouleversement dans les représentations du monde, et consécutivement dans les représentations sociales.

L'expression « Lumières » pour désigner le courant philosophique européen (en particulier en France) qui a dérivé de cette conception plutôt mécaniste du monde et de l'univers a également donné son nom au siècle pendant lequel cette représentation sociale s'est mise en place, communément appelé le siècle des Lumières, et que Michel Foucault analyse dans les Mots et les Choses (voir aussi épistémè).

Georges Duby, dans le temps des cathédrales (1975), décrit également, sous l'angle artistique, la théologie de la Lumière, initiée à la basilique Saint-Denis au XIIe siècle, qui est à l'origine de l'architecture dite gothique (mot apparu au XIXe siècle et de l'émergence des cathédrales dites gothiques dans toute l'Europe. Selon la théologie de la lumière, la lumière du ciel passe à travers les vitraux, où sont représentés des scènes de l'Ancien Testament et du Nouveau Testament, illustration imagée de notre catéchisme moderne, pour des populations qui étaient encore peu cultivées dans leur ensemble.

Lumière et société[modifier | modifier le code]

La lumière est, au même titre que le feu, un des phénomènes culturels des plus significatifs. De nos jours, la lumière artificielle produite par les lampes offre une certaine sécurité et un confort de vie, y compris pendant les périodes d'obscurité naturelle (nuit) et dans les endroits isolés (cavernes, bâtiments). D'un point de vue technique, les agents qui produisent la lumière sont désignés par les termes de « lampe » et « ampoule ». Le luminaire désigne le support de la lampe. La lumière, ou le luminaire, sont également un symbole pour signifier l'intelligence (la lueur d’espoir, l'essor des Lumières). L'absence d'intelligence est, à contrario, représentée par l'obscurité. En religion, la lumière représente l'espoir du Christ de la libération des hommes des ténèbres du mal. Dans la Genèse de la Bible, la lumière est le premier élément inventé par Dieu[14].

La lumière et la législation[modifier | modifier le code]

La lumière compte parmi les facteurs environnementaux dans la loi sur la protection des immissions. Les immissions lumineuses issues de systèmes d'éclairage artificiels peuvent perturber significativement le cycle du sommeil indispensable à l'homme et à la nature en empêchant la réalisation de certains procédés naturels. Les directives sur la lumière, particulières à chaque pays, définissent l'éclairage normatif de l'éclairage (des pièces) et le seuil d'éblouissement (cf. : Lumière spéculaire) (psychologique). Les lumières aux couleurs intenses et clignotantes peuvent s'avérer particulièrement perturbantes. Le législateur veille à la bonne application de la loi en matière d'environnement , grâce au code de l'environnement ( France). La sécurité en matière de transport (la navigation nocturne, les éblouissements, dus par exemple aux phares de voiture mal réglés ou à un éclairage urbain trop intense), ainsi que l'influence sur la faune sauvage (par exemple, sur les insectes nocturnes, la perturbation des oiseaux migratoires) et l'éclairage de l'atmosphère en général (la pollution lumineuse nuisible à l'observation de l'espace est souvent due au spectre de lumière (cf. : Diffusion des ondes) émis par les différents luminaires pour l'éclairage nocturne) sont comptés parmi les effets néfastes de la lumière.


Notes et références[modifier | modifier le code]

  1. Le cercle des couleurs chromatiques de Newton, sur le site profil-couleur.com
  2. Voir Lumière noire pour exemple
  3. (de) Abhandlung über das Licht, J. Baarmann (ed. 1882) Zeitschrift der Deutschen Morgenländischen Gesellschaft Vol 36
  4. a et b (en) The 'first true scientist', sur le site news.bbc.co.uk
  5. (en) Thiele, Rüdiger (2005), "In Memoriam: Matthias Schramm", Arabic Sciences and Philosophy (Cambridge University Press) 15: 329–331, doi:10.1017/S0957423905000214
  6. Thiele, Rüdiger (August 2005), "In Memoriam: Matthias Schramm, 1928–2005", Historia Mathematica 32 (3): 271–274, doi:10.1016/j.hm.2005.05.002
  7. (en) Grant 1974 p.392 note que le Traité d'Optique est aussi connu comme Opticae Thesaurus Alhazen Arabis, comme De Aspectibus, et comme Perspectiva
  8. Pour plus de précisions, voir l'article indice de réfraction
  9. Ralentissement de photons dans un condensat de Bose-Einstein
  10. Document pédagogique Cléa Académie de Nice
  11. Pulsed-Light Inactivation of Food-Related Microorganisms, N. J. Rowan, 1* S. J. Macgregor, 2 J. G. Anderson, 1 R. A. Fouracre, 2 L. Mcilvaney, 2 et O. Farish 2, Department of Bioscience & Biotechnology, Department of Electronic & Electrical Engineering, Université de Strathclyde, Glasgow, Scotland, 1998 (Test d'impact de la lumière UV sur Listeria monocytogenes, Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Bacillus cereus et Staphylococcus aureus. Deux cents pulsations lumineuses de cent nanosecondes chacune ont montré des effets très significatifs (lien vers le résumé de l'étude)
  12. (en) Riemersma-van der Lek et coll. ; Effect of bright light and melatonin on cognitive and non cognitive function of elderly residents of group care facilities. A randomized controlled trial. Revue JAMA 2008 ; 299 : 2642-2655
  13. a et b Cité dans un Article de Julie Luong intitulé Lumière et mélatonine contre la maladie d'Alzheimer. Consulté le 15 octobre 2008.
  14. La Bible - Genèse
  • (de) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en allemand intitulé « Licht » (voir la liste des auteurs) (notamment le paragraphe "physiologie")

Bibliographie[modifier | modifier le code]

Annexes[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]