Aurore polaire

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Aurore.
Aurore boréale en Alaska.
Aurore australe en Antarctique.
Aurore australe depuis la navette Discovery.
Aurore australe vue de l'espace (obtenue par surimpression d'une photo de la Terre).
Aurore photographiée par le satellite DMSP au-dessus du nord de l'Europe.
Aurore « polaire » près de Belfort, France (novembre 2003).
Aurore boréale dans la région de l'Abitibi, 48e parallèle Nord, Canada).

Une aurore polaire (également appelée aurore boréale dans l'hémisphère nord et aurore australe dans l'hémisphère sud[1]) est un phénomène lumineux caractérisé par des voiles extrêmement colorés dans le ciel nocturne, le vert étant prédominant.

Provoquées par l'interaction entre les particules chargées du vent solaire et la haute atmosphère, les aurores se produisent principalement dans les régions proches des pôles magnétiques, dans une zone annulaire justement appelée « zone aurorale » (entre 65 et 75° de latitude). En cas d'activité magnétique solaire intense, l'arc auroral s'étend et commence à envahir des zones beaucoup plus proches de l'équateur. L'aurore polaire due à l'éruption solaire de 1859 est « descendue » jusqu'à Honolulu et jusqu'à Singapour en septembre 1909 atteignant ainsi le dixième degré de latitude sud[2]. En octobre et novembre 2003, une aurore boréale a pu être observée dans le sud de l'Europe[3], mais les régions les plus concernées par ce phénomène restent le Groenland, la Laponie, l'Alaska, l'Antarctique, le nord du Canada et l'Islande. Un phénomène d'ampleur exceptionnelle s'est produit le 24 octobre 2014, visible en Amérique du Nord et en Europe du Nord[4].

Histoire, légendes et études[modifier | modifier le code]

Les aurores boréales ont été observées depuis toujours, et ont probablement beaucoup impressionné les anciens ; dans l'antiquité, aussi bien en occident qu'en Chine les aurores étaient vues comme des serpents ou des dragons dans le ciel[5].

Pline l'Ancien écrit : « On a vu pendant la nuit, sous le consulat de C. Caecilius et de Cn. Papirius (an de Rome 641), et d'autres fois encore, une lumière se répandre dans le ciel, de sorte qu'une espèce de jour remplaçait les ténèbres. »[6]

Elles sont associées à de nombreux mythes et légendes. Toutes les langues évoquent ces « lumières du nord » à l'exception des finlandais qui utilisent le terme finnois de revontulet et qui peut se traduire par « queue de renard rouge » ou « feux du renard » : certains peuples Samis racontent que le renard polaire, en parcourant rapidement les vastes étendues enneigées, éjecte de la poussière avec sa queue dans le ciel, ce qui crée ainsi les aurores boréales le long de leur passage[7]. Les Inuits du Groenland surnomment les aurores aqsarniit, croyant que les âmes des morts jouent à la balle avec des crânes de morses. Une tribu du [[Nunavut]] pense à l'inverse que ce sont les morses qui jouent à la balle avec des crânes humains. Leur teinte rouge associée au sang est responsable du fait que les Inuits de l'est du Groenland croient que les aurores polaires sont l'âme d'enfants morts-nés[8].

D'autres mythologies nordiques évoquent le Bifröst, la danse des esprits de certains animaux, particulièrement les saumons, les rennes, les phoques et les bélugas ; le souffle des baleines de l’océan Arctique ; le reflet du Soleil ou de la Lune sur les armures des Valkyries quand elles traversent le Ciel ; des torches allumées par les esprits des morts pour accueillir au paradis les nouveaux arrivants[5].

En Europe au Moyen Âge, les aurores polaires qui prennent des teintes rouges sont associées au sang et à la guerre. Elles présagent une catastrophe ou sont vues comme le souffle des guerriers célestes qui racontent leurs combats dans le ciel[9].

Elles n'ont été étudiées scientifiquement qu'à partir du XVIIe siècle. En 1621, l'astronome français Pierre Gassendi décrit ce phénomène observé jusque dans le sud de la France et lui donne le nom d'aurore boréale. Au XVIIIe siècle, l'astronome britannique Edmond Halley soupçonne le champ magnétique terrestre de jouer un rôle dans la formation des aurores boréales. Henry Cavendish, en 1768, parvient à évaluer l'altitude à laquelle se produit le phénomène, mais il faudra attendre 1896 pour que celui-ci soit reproduit en laboratoire par Birkeland. Les travaux de Carl Stormer sur les mouvements des particules électrisées dans un champ magnétique ont facilité la compréhension du mécanisme de formation des aurores.

À partir de 1957, l'exploration spatiale a permis non seulement une meilleure connaissance des aurores polaires terrestres, mais aussi l'observation de phénomènes auroraux sur les grosses planètes comme Jupiter ou Saturne. En 1975, le programme franco-russe ARAKS parvient à créer une aurore polaire artificielle.

En 2008, le chercheur Jean Lilensten a mis au point une expérience, basée sur celle de Birkeland, appelée la Planeterrella. Celle-ci permet de simuler les aurores polaires[10].

Le nuage ionisé que constitue l'aurore polaire réfléchit les ondes électromagnétiques dans le domaine des très hautes fréquences (VHF et au-delà). Les radioamateurs utilisent ce phénomène pour réaliser des liaisons expérimentales à grande distance. Les ondes radio sont en fait diffusées plus que réfléchies ce qui produit une forte déformation de la modulation. La télégraphie morse est pratiquement le seul mode de transmission utilisable. Un effet néfaste de ce phénomène est la perturbation des communications sur ces fréquences.

Formation[modifier | modifier le code]

Lors d'un orage solaire accompagnant un orage magnétique, et faisant suite à une éruption chromosphérique ou un sursaut solaire important (le soleil offre un pic d'activation solaire sur un cycle de 11 ans)[11], un afflux de particules chargées, éjectées par le Soleil, entre en collision avec le bouclier que constitue la magnétosphère[11]. Des particules électrisées à haute énergie peuvent alors être captées et canalisées par les lignes du champ magnétique terrestre du côté nuit de la magnétosphère (la queue) et aboutir dans les cornets polaires. Ces particules, — électrons, protons et ions positifs —, excitent ou ionisent les atomes de la haute atmosphère, l'ionosphère[12]. L'atome excité ne peut rester dans cet état, et un électron change alors de couche, libérant au passage un peu d'énergie, en émettant un photon (particule élémentaire constitutive de la lumière visible). Comme la nature de ces ions (oxygène, hydrogène, azoteetc.) dépend de l'altitude, ceci explique en partie les variations de teintes des nuages, draperies, rideaux, arcs, rayons... qui se déploient dans le ciel à des altitudes comprises entre 80 et 1 000 km. L'ionisation résultant de cet afflux de particules provoque la formation de nuages ionisés réfléchissant les ondes radio.

C'est en juillet 2008 qu'une explication cohérente de ce phénomène a été fournie par la NASA grâce à la mission américaine THEMIS. Les scientifiques ont en effet localisé la source de ces phénomènes dans des explosions d'énergie magnétique se produisant à un tiers de la distance qui sépare la Terre de la Lune. Ils sont ainsi provoqués par des « reconnexions » entre les « cordes magnétiques géantes » reliant la Terre au Soleil qui stockent l'énergie des vents solaires.

L'étude spectrographique de la lumière émise montre la présence de l'oxygène (raie verte à 557 nm et doublet rouge à 630 et 636 nm) entre 120 et 180 km d'altitude, de l'azote et de ses composés et de l'hydrogène (656 nm) lors des aurores à protons. Aux plus basses latitudes, la couleur observée le plus fréquemment est le rouge (altitudes de 90 à 100 km).

Le phénomène se produit lorsque les particules émises par le Soleil s'électromagnétisent au-dessus de la stratosphère. Elles recouvrent ainsi le ciel de draperies phosphorescentes pouvant furtivement reproduire sur leur bord toutes les couleurs du spectre. Il faut que le ciel soit clair, dégagé de préférence sans Lune et dépourvu de lumières parasites.

Les aurores boréales sont aujourd'hui prévisibles, grâce notamment aux travaux de l'observatoire Kjell Henriksen avec le Centre universitaire du Svalbard, et à leur programme informatique SvaltrackII disponible au grand public[13].

Classifications[modifier | modifier le code]

Les premiers scientifiques qui se sont intéressés aux phénomènes auroraux ont tout d'abord instauré des classifications de celles-ci en tenant compte de la forme, de l'étendue et de l'intensité des émissions, ce qui permet une approche objective et quantitative du phénomène[12]. Ainsi en sont-ils venus à deux types d'aurores : les formes discrètes et les formes diffuses.

Les formes discrètes ont comme caractéristique de se former en longs arcs ou en bandes. Les arcs « ondulent » de seconde en seconde, comme certains nuages changent d'apparence sous l'effet du vent. Elles prennent ainsi la forme de la magnétosphère (champ magnétique de la Terre, ce qui leur donne les apparences d'une largeur plutôt mince (de 1 à 10 km), mais d'une longueur courbée presque infinie.

Couleurs[modifier | modifier le code]

Les phénomènes auroraux prennent plusieurs teintes différentes, passant du vert au rose, au rouge et à l'indigo violet. Trois gaz sont à l'origine de ces phénomènes : l'azote, l'oxygène et l'hydrogène. L'azote donne des couleurs bleues et rouges et l'oxygène des teintes vertes et rouges. Notre atmosphère, principalement constituée d'azote (environ 80 %) et d'oxygène, nous offre généralement des spectacles visuels de couleur rouge pouvant donner l'impression d'un ciel en feu[14].

Observations[modifier | modifier le code]

Le spectacle est très changeant et peut débuter par la formation d'un arc (arc auroral) perpendiculaire au méridien magnétique du lieu, puis s'accompagner de rayons parfois animés d'une pulsation plus ou moins rapide (0,05 à 15 hertz) ou se déplacer plus ou moins rapidement. On observe parfois des lueurs ressemblant à un rideau ou une draperie agitée par la brise.

La luminosité peut considérablement varier, de sorte que le phénomène peut durer de quelques minutes à plusieurs heures. Il est très rare d'observer des aurores à des latitudes magnétiques inférieures à 50 degrés. Cela se produit seulement pendant la période d'activité solaire maximale du cycle de 11 ans, lors des éruptions solaires les plus importantes.

Conséquences liées aux aurores[modifier | modifier le code]

Avant l'ère des communications par satellites, le meilleur moyen de communication dans les régions vastes et étendues comme celle du Canada était la communication par les ondes radio. Lors d'orages solaires intenses, les communications se voyaient interrompues puisque ces ondes voyagent par le biais de la haute atmosphère[14].

D'après des scientifiques canadiens, les lumières célestes nocturnes seraient à l'origine de plusieurs pannes électriques à grande échelle sur notre planète et même de la perturbation des transmissions d'informations des satellites autour de notre orbite[14].

Présence sur d'autres planètes[modifier | modifier le code]

Aurore sur Jupiter, en ultraviolet.

Les aurores polaires ne sont pas un phénomène spécifique à la Terre. Il est possible d'en trouver sur n'importe quelle planète possédant un champ magnétique. Elles sont observables grâce aux photographies prises en ultraviolet par le télescope Hubble[15].

Les aurores polaires vues sur les planètes autres que la Terre peuvent être générées par d’autres phénomènes physiques que ceux provoquant les aurores terrestres. Sur Jupiter, par exemple, l'ovale auroral principal est une conséquence de la « rupture de co-rotation » du plasma : le champ magnétique de la planète entraîne normalement le plasma avec lui, mais, à partir d'une certaine distance, la vitesse à communiquer au plasma devient trop grande et celui-ci ne suit plus. Cela crée un courant électrique à l'origine de l'ovale auroral.

Sur Jupiter, les satellites de la planète créent un courant électrique en se déplaçant par rapport au champ magnétique (même phénomène que pour une dynamo). Ces courants créent des « spots auroraux », vus pour la première fois en infrarouge[16], puis en UV[17]. On peut voir ces spots sur l'image ci-contre, en dehors de l'ovale principal : le spot le plus brillant correspond à Io (à gauche), ceux de Europe et Ganymède sont visibles au premier plan.

Toujours sur Jupiter, un groupe de chercheurs du Laboratoire de physique atmosphérique et planétaire de l'ULg a été en mesure de faire l'observation de phénomènes auroraux sur la géante gazeuse par le biais du télescope Hubble[18]. En particulier celles dues aux satellites Io, Europe et Ganymède. Leur travail révèle le détail des spots ultraviolets et permet une meilleure compréhension des phénomènes les engendrant.

Des aurores polaires ont également été photographiées par Hubble sur Saturne[19].

Le 21 janvier 2013, des chercheurs annoncent avoir très probablement détecté pour la première fois des aurores sur des exoplanètes, grâce au Low-Frequency Array radio telescope basé aux Pays-Bas[20].

Notes et références[modifier | modifier le code]

  1. « Glossaire d'astronomie », Agence spaciale canadienne,‎ 17 août 2004 (dernière modification) (consulté le 4 octobre 2014)
  2. (en) [The northern lights-what are they ? http://geo.phys.uit.no/articl/theaurora.html]
  3. L'aurore boréale du 30 octobre 2003
  4. Le Monde / Vidéo (2014), En Suède, des aurores boréales d'une intensité exceptionnelle (Lights over Lapland, via Reuters)
  5. a et b (en) Wendy Leonard, The Utterly, Completely, and Totally Useless Science Fact-o-pedia : A Startling Collection of Scientific Trivia You’ll Never Need to Know, HarperCollins,‎ 2013, 320 p. (lire en ligne)
  6. Pline l'Ancien, Histoire naturelle, livre II, XXXIII, Dubochet, Le Chevalier et Cie,‎ 1850. (lire en ligne)
  7. (en) Siobhan Logan, Firebridge to Skyshore : A Northern Lights Journey, Original Plus,‎ 2009 (lire en ligne), p. 6
  8. Aurore polaire... Le cinéma des ours blancs, sur meteo.org
  9. Lythes et légendes : les les aurores polaires
  10. « Planeterrella - Un simulateur d'aurores polaires », sur le site de la Planeterrella (consulté le 17 avril 2014)
  11. a et b Wilfried Rochard, « Qu'est-ce qu'une aurore boréale? », sur http://www.pomms.org,‎ 29 janvier 2006 (consulté le 21 décembre 2009)
  12. a et b Jean-Jacques Berthelier, « Aurore polaire », Encyclopaedia Universalis France,‎ 2009 (consulté le 21 décembre 2009)
  13. La prévision des aurores boréales possible sur smartphone sur 123opendata.com
  14. a, b et c Agence spatiale canadienne, « Aurores boréales », Gouvernement du Canada (consulté le 30 novembre 2012)
  15. I. Bualé, D. Crussaire et N. Vilmer, « Le vent solaire et les aurores polaires », Institut de mécanique céleste et de calcul des éphémérides (consulté le 21 décembre 2009)
  16. (en) J. E. P. Connerney, R. Baron, T. Satoh et T. Owen, « Images of Excited H3+ at the Foot of the Io Flux Tube in Jupiter's Atmosphere », Bulletin of the American Astronomical Society, American Astronomical Society, 25th DPS Meeting, #19.05, vol. 25,‎ juin 1993, p. 1082 (lire en ligne)
  17. (en) Renée Prangé, Daniel Rego, David Southwood, Philippe Zarkaparallel, Steven Miller et Wing Ip, « Rapid energy dissipation and variability of the lo-Jupiter electrodynamic circuit », Nature, vol. 379,‎ 25 janvier 1996, p. 323-325 (lire en ligne)
  18. Bertrand Bonfond et Aikaterini Radioti, « Des planétologues de l'Université de Liège dévoilent des aspects cachés de Jupiter », université de Liège,‎ 17 mars 2008 (consulté le 21 décembre 2009)
  19. Saturne connaît aussi des aurores polaires, sur Futura-sciences
  20. « Alien Auroras May Light Up Exoplanet Night Skies », Space.com, par Miriam Kramer, le 21 janvier 2013.

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Sur les autres projets Wikimedia :