Orion (véhicule spatial)

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Orion

alt=Description de cette image, également commentée ci-après

Vue d'artiste

Fiche d'identité
Organisation Drapeau : États-Unis NASA
Constructeur Lockheed Martin
Type de vaisseau Vaisseau spatial habité
Lanceur Space Launch System
Premier vol 5 décembre 2014
Nombre de vols 1
Statut en développement
Caractéristiques
Hauteur ~7 m.
Diamètre 4,06 m.
Masse totale 21,25 t.
Ergols 7,9 t.
Source énergie Panneaux solaires
Atmosphère Oxygène/azote
Atterrissage en mer
Performances
Destination au-delà orbite basse
Équipage 4
Volume pressurisé 19,56 m³
Espace habitable 8,95 m³
Delta-V 1340 m/s
Autonomie 21 jours
Puissance électrique 11 kW
Type d'écoutille NASA Docking System
Rendez-vous non automatique

Orion est un vaisseau spatial de la NASA destiné à transporter un équipage d'astronautes au-delà de l'orbite basse. Il est initialement développé dans le cadre du programme Constellation (2006) dont l'objectif est d'emmener des hommes sur la Lune à l'horizon 2020 et de remplacer la navette spatiale pour la relève des équipages de la Station spatiale internationale. En février 2010 le programme Constellation est abandonné et après avoir envisagé d'annuler le développement du vaisseau, la NASA décide de poursuivre son développement pour de futures missions de survol de la Lune et des astéroïdes et éventuellement le transport de l'équipage de la Station spatiale internationale. Il doit être placé en orbite par le lanceur lourd SLS dont le développement a été décidé à la suite de l'abandon du programme Constellation.

Le vaisseau Orion est conçu pour transporter 4 personnes pour une mission de 3 semaines au delà de l'orbite terrestre basse et jusqu'à 6 personnes en orbite basse. Il reprend l'architecture du vaisseau Apollo avec un module de commande dans lequel séjourne l'équipage contenant l'habitacle en forme de cône et un module de service dans lequel est rassemblé tout ce qui n'est pas nécessaire au retour sur Terre. Ce dernier module est largué avant la rentrée atmosphérique. L'ensemble a une masse de 21 tonnes dont plus de 12 tonnes pour le module de service. Contrairement à ses prédécesseurs, il utilise des panneaux solaires pour la fourniture d'énergie. Il dispose d'un volume habitable plus que doublé par rapport au vaisseau Apollo et d'une écoutille de type APAS similaire à celle de la navette spatiale américaine. Le vaisseau est conçu pour se poser sur l'eau à son retour sur Terre et est réutilisable.

Confronté à des difficultés financières, la NASA n'envisage un premier vol avec équipage qu'en 2021. Le premier test orbital du module de commande s'est déroulé en décembre 2014 et celui d'un véhicule complet est programmé en 2017.

Historique[modifier | modifier le code]

Le lancement du programme Constellation[modifier | modifier le code]

Le vaisseau Orion et le module lunaire Altair composants du programme Constellation (vue d'artiste 2007).

En 2004, à la demande du président des États-Unis George W. Bush qui souhaite que les États-Unis renouent avec les succès du programme Apollo, la NASA lance le programme Constellation qui doit permettre à des équipages de réaliser des séjours de longue durée sur la Lune d'ici 2020. Ce programme doit également assurer le remplacement de la navette spatiale américaine dont le retrait est programmé à la suite de l'accident de la navette spatiale Columbia. Le programme doit être financé grâce aux économies réalisées par l'arrêt des navettes spatiales puis par le retrait de la station spatiale internationale.

Les caractéristiques des différents engins spatiaux du programme Constellation sont rendues publiques le 19 septembre 2005. Le vaisseau spatial habité principal est désigné sous l'appellation de Crew Exploration Vehicle (CEV) avant d'être rebaptisé Orion le 24 août 2006. Ce nom est celui d’une des navettes du film 2001, l'Odyssée de l'espace (1968), ainsi que d’une étude de vaisseau spatial propulsé par l'énergie nucléaire. La NASA a annoncé le 31 août 2006 que le véhicule sera construit par Lockheed-Martin. Le vaisseau spatial doit être lancé par un nouveau lanceur, l'Ares I.

Les premiers essais sont prévus en 2008 avec un vol non habité en 2011 et un vol habité en mars 2015 et un premier retour des astronautes sur la Lune en 2019, mais ces dates sont repoussées du fait de la faiblesse des ressources financières affectées au programme[1].

L'arrêt du programme Constellation[modifier | modifier le code]

Article détaillé : Commission Augustine.

Suite à son investiture, le président américain Barack Obama demande à la commission Augustine, créée à cet effet le 7 mai 2009 et composée de spécialistes de l'astronautique issus de l'industrie de la recherche et de la NASA, d'examiner les conséquences du retrait de la navette spatiale américaine sur le programme de la station spatiale internationale et d'effectuer une revue du programme Constellation confronté à la fois à des problèmes budgétaires et de planification. Le comité rend son rapport en octobre 2009. En ce qui concerne le programme Constellation, ses principales conclusions sont que la NASA a besoin d'un complément budgétaire annuel de 3 milliards de $ pour pouvoir atteindre les objectifs fixés au programme Constellation[2]. Elle constate que le lanceur Ares I, qui doit permettre le lancement du vaisseau Orion, rencontre des problèmes techniques qui devraient pouvoir être résolus mais sa mise au point tardive diminue fortement son intérêt. Le comité estime préoccupant le coût de production du vaisseau Orion par ailleurs soumis à de fortes contraintes (masse, coût de développement)[3]. Le président Barack Obama annonce le 1er février 2010 qu'il va proposer l'annulation du programme Constellation en avançant trois motifs : un budget en dépassement, le retard pris sur les échéances et l'absence d'innovations intégrées dans le projet[4]. Le 11 octobre 2010 le président Obama approuve le « NASA Authorization Act 2010 » qui confirme l'arrêt du programme Constellation[5].

Le nouveau rôle du vaisseau Orion[modifier | modifier le code]

À la suite de l'abandon du programme Constellation, l'arrêt du développement du vaisseau spatial est envisagé. La NASA a lancé un appel d'offres auprès de prestataires privés pour transporter les équipages vers la Station spatiale internationale et il n'existe pas de plans fermes pour des missions au delà de l'orbite terrestre. Néanmoins, la NASA annonce le 24 mai 2011 que le développement du vaisseau spatial se poursuit. L'agence spatiale américaine prévoit de l'utiliser pour lancer des missions orbitales vers la Lune ou les astéroïdes géocroiseurs à l'horizon 2020. Il doit également servir de solution de secours si les prestataires privés ne parvenaient pas à remplir leurs objectifs de desserte de la station spatiale. Le vaisseau est rebaptisé Multi-Purpose Crew Vehicle (MPCV) "Orion"[6].

Participation de l'ESA[modifier | modifier le code]

Le développement du module de service a été repoussé pour permettre d'étaler les coûts. La NASA et l'Agence Spatiale Européenne ont négocié depuis 2011 l'utilisation d'une version évoluée du module de service de l'ATV européen. Cette proposition de l'ESA lui permet de payer en nature sa participation à la Station spatiale internationale[7] qui n'est plus couverte par la livraison des vaisseaux ATV. En effet le dernier vaisseau cargo ATV livré par l'ESA en 2014 n'assure le paiement du séjour que jusqu'en 2017. Cette décision de l'ESA a été validée en novembre 2012 par le conseil des ministres européens réunis à Naples pour statuer sur l'activité de l'Agence spatiale européenne au cours des prochaines années. La solution retenue a été validée par le gouvernement américain et officiellement annoncée en janvier 2013[8],[9]. Ce module sera construit pour 450 millions d'euros sous la maîtrise d'œuvre d'Astrium à Brême.

Premiers vols prévus[modifier | modifier le code]

Le module de commande sans les deux autres composants du vaisseau a fait l'objet d'un premier test en vol le 05 décembre 2014 après un report de 24 heures (“Exploration Flight Test 1” ou EFT-1). Un lanceur Delta IV lourd a placé le vaisseau sur une orbite haute elliptique. Après avoir bouclé deux orbites autour de la Terre, le vaisseau a effectué une rentrée atmosphérique à une vitesse égale à 84 % de celle atteinte dans le cadre d'une mission vers la Lune. L'objectif était de tester la tenue du bouclier thermique ainsi que le déploiement des parachutes[10]. Le premier module de service européen (ESM) sera quant à lui utilisé pour une mission prévue fin 2017, qui consistera en un survol inhabité de la Lune par Orion.

Caractéristiques techniques[modifier | modifier le code]

Architecture[modifier | modifier le code]

Schéma du véhicule et de son module de service.

Conçu dans le cadre du Programme Constellation, le vaisseau utilise une architecture dite "en ligne". Le vaisseau est placé au sommet d'un lanceur classique à l'image des vaisseaux du programme Apollo dont Orion s'inspire fortement. La formule du planeur adoptée pour la navette spatiale américaine n'a pas été retenue. Orion peut transporter quatre astronautes pour des vols de 21 jours et 6 astronautes vers l'orbite basse où il peut séjourner dans l'espace durant 6 mois attaché à la station spatiale[11],[12]. Les piles à combustible qui alimentaient en énergie la génération des vaisseaux précédents sont abandonnées au profit de panneaux solaires. Le vaisseau dispose d'une écoutille de type APAS, le NASA Docking System, similaire à celle utilisée par la navette spatiale américaine pour s'amarrer à la Station spatiale internationale. L'atmosphère de la cabine est composée d'un mélange d'azote et d'oxygène dans des proportions qui peuvent être modulées. Ce choix, identique à ce qui est pratiqué sur les vaisseaux russes diverge de la solution adoptée sur les différents aux vaisseaux spatiaux américains des années 1960-1970 qui, pour économiser de la masse, utilisaient une atmosphère d'oxygène pur (choix qui s'était avéré dangereux après la catastrophe d'Apollo 1). Les spécifications du module de service ne sont connues qu'à travers le cahier des charges établi pour le programme Constellation dont les missions ne sont plus d'actualité. À l'époque il était envisagé que la propulsion et le réserves d'ergols du module de service lui permette d'effectuer des changements de vitesse totaux de 1,4 à 1,5 km/s.

Orion mesure 5,03 mètres de diamètre et la partie habitée a une longueur de 3,3 m. L'ensemble Orion a une masse de 21,3 tonnes dont 8,9 tonnes pour le module de commande, 3,4 tonnes pour le module de service et 7,9 tonnes pour le carburant. Le vaisseau peut être réutilisé une dizaine de fois. Initialement son retour avait été prévu sur la terre ferme, amorti par des coussins gonflables, et non dans l'océan, contrairement à toutes les autres capsules américaines (de Mercury à Apollo). Cependant après 117 essais d'atterrissage avec des airbags, le retour en mer a été privilégié en raison d'une sécurité accrue (notamment si un parachute est défaillant comme lors du retour d'Apollo 15) et d'un atterrissage moins brutal.

Module de commande dans lequel se tient l'équipage.

Orion est composé de trois modules : le module de commande dans lequel séjourne l'équipage, le module de service qui regroupe les équipements qui ne sont pas indispensables pour le retour sur Terre (propulsion, consommables, énergie) et la tour de sauvetage qui permet au vaisseau de revenir au sol en toute sécurité en cas de défaillance du lanceur.

Comparaison des caractéristiques d'Orion avec celles de ses prédécesseurs
Caractéristiques Orion Apollo Soyouz
Longueur ~7 m. 11,03 m. 7,48 m.
Diamètre max 5,03 m. 3,9 m. 2,72 m.
Envergure 18,8 m. 3,9 m. 10,06 m.
Masse totale (ergols) 21,25 t (7,9 t.) 30,33 t. (18,5 t.) 7,25 t. (0,9 t.)
Volume pressurisé / habitable 19,56 m³ / 8,95 m³ / 6,17 m³ / 9 m³
Delta-V 1 340 m/s 2 800 m/s 390 m/s
Source énergie Panneaux solaires Piles à combustible Panneaux solaires
Production énergie 11 kW kW 0,6 kW
Durée mission 21 j. 14 j. 14 j.
Taille équipage 4 3 3
Zone d'atterrissage Mer Mer Terre

Le module de commande[modifier | modifier le code]

Le module de commande ou module d'équipage (Crew Vehicule), dont la section est de forme conique, transporte l'équipage, du fret et des instruments scientifiques. Ce module peut s'amarrer à la Station spatiale internationale. C'est la seule partie du vaisseau qui revient sur Terre après chaque mission. Le volume pressurisé est de 19,56 m3 et le volume habitable est de 8,95 m3[13].

Structure[modifier | modifier le code]

Les composants structurels du module de commande et la coque pressurisée sont réalisés dans un alliage aluminium-lithium de couleur vert olive utilisé précédemment pour la réalisation de la version allégée du réservoir externe de la navette spatiale américaine utilisée à partir de 1998. La coque pressurisée comprend plusieurs composants - cloison avant, cloison arrière, tunnel de communication, cylindre du module - sont assemblés en utilisant la technique du soudage par friction. Le cylindre et la cloison arrière servent de support pour un treillis de poutrelle qui ajoute de la rigidité à l'ensemble et sert de support aux points d'attache des sièges de l'équipage, aux systèmes installés dans la coque pressurisée et aux armoires de rangement. La coque pressurisée comporte 4 hublots : 2 hublots horizontaux et de deux hublots inclinés permettant d'observer vers l'avant du vaisseau pour les opérations d'amarrage. De nombreux équipements ne nécessitent pas de se trouver à l'intérieur de la coque pressurisée : avionique, réservoirs d'ergols, batteries, systèmes de contrôle de l'environnement. Ils sont installés principalement autour du tunnel de communication situés à l'avant du vaisseau. La coque pressurisée et les équipements externes sont recouvert par des panneaux en nid d'abeille de titane qui fournissent une première isolation thermique et sont chargés de bloquer les micro-météorites[14].

Bouclier thermique[modifier | modifier le code]

Le bouclier thermique, de type ablatif, est conçu par Boeing en collaboration avec le Ames Research Center. D'un diamètre de cinq mètres, il est composé d'un nid-d’abeilles rempli d'une résine (même méthode que le module Apollo). Il doit résister à des rentrées atmosphériques à la vitesse de 27 000 km/h pour les missions vers la Station spatiale internationale et de 40 000 km/h pour des missions orbitales lunaires. Ces dernières nécessitent de dissiper cinq fois plus de chaleur. En septembre 2006, le contrat de 14 millions de dollars est remporté par Boeing.

Système d'atterrissage[modifier | modifier le code]

Le vaisseau Orion est conçu pour amerrir. Au cours de sa rentrée atmosphérique le vaisseau est freiné. Lorsque sa vitesse est descendue à 480 m/s à une altitude d'environ 4,5 à 6 km, deux parachutes pilotes d'un diamètre de 7 mètres sont déployés. Au bout d'environ 1 minute ils ont réduit la vitesse verticale du vaisseau à 160 km/h et pratiquement annulé sa vitesse horizontale ce qui permet l'ouverture des parachutes principaux. Les parachutes pilotes sont largués et les trois parachutes principaux sont déployés. Chaque parachute d'une masse de 135 kg a un diamètre de 35,4 mètre. La vitesse verticale chute à 30 km/h et le vaisseau amerrit. Immédiatement après sa prise de contact avec la mer, 5 ballons se gonflent pour garantir que le module d'équipage soit posé sur l'eau dans le bon sens. L'équipage et le vaisseau sont recueillis alors par les hélicoptères et les équipages d'un LPD de la Marine de guerre américaine.

Le module de service[modifier | modifier le code]

Le module de service regroupe l'ensemble des équipements qui ne sont pas indispensables pour le retour sur Terre. On y trouve la propulsion principale et les réservoirs d'ergols associés ainsi que les consommables (eau, oxygène, azote) utilisés par l'équipage. Les panneaux solaires qui produisent l'énergie électrique du vaisseau ainsi que les radiateurs qui assurent l'évacuation de la chaleur excédentaire sont également logés dans le module de service. Un système environnemental permet de contrôler la température des composantes du véhicule et du fret. Il est largué avant le retour sur Terre[15]. Le module de service est également équipé d'une soute permettant d'emporter du fret non pressurisé ou des instruments scientifiques. La version du module de service utilisée pour le premier vol est développée par l'ESA au titre de paiement pour le séjour des astronautes européens à bord de la Station spatiale internationale entre 2017 et 2020. En effet le dernier vaisseau cargo ATV livré par l'ESA en 2014 n'assure le paiement du séjour que jusqu'en 2017. Fin 2014, la NASA n'avait commandé qu'une seul exemplaire de ce module baptisé European Service Module et on ne sait pas si cette version sera reconduite pour les vols suivants.

Structure[modifier | modifier le code]

Le module de service ESM a une longueur de 2,72 mètres (tuyère exclue) pour un diamètre de 4,5 mètres. Sa masse à sec est d'environ 3,8 tonnes et il peut emporter 9,2 tonnes d'ergols. Il est composé de plusieurs sous-ensembles : un cylindre supérieur, une plateforme supportant les réservoirs principaux d'ergols, un cylindre principal, une plateforme inférieure, un étage regroupant les équipements et une enveloppe protégeant l'ensemble des micro météorites.

Propulsion[modifier | modifier le code]

La propulsion comprend trois systèmes distincts : un moteur-fusée principal dérivé du moteur OMS de la navette spatiale américaine, 8 propulseurs auxiliaires et 24 petits moteurs utilisés pour le contrôle d'attitude. La propulsion est pilotée par un système développé pour l'ATV. Tous ces moteurs utilisent le même mélange d'ergols stockables : du monométhylhydrazine et du MON-3 (oxydant). Chaque type d'ergol est stocké dans deux réservoirs qui sont reliés en série et disposent de système de pressurisation indépendants. Le système de pressurisation utilise de l'hélium stocké à 340 bars dans un réservoir sphérique. Tous les moteurs sont alimentés par des ergols mis sous pression. Le moteur principal est de type AJ10-190 qui fournit une poussée de 27,7 kN avec une impulsion spécifique de 316 secondes. Il mesure 1,91 m de long et sa tuyère a un diamètre de 1,09 mètres. Les propulseurs auxiliaires de type R-4D-11 fournissent chacun une poussée de 490 Newtons et sont utilisés pour les manœuvres précises ainsi que comme système de secours en cas de défaillance du propulseur principal. Ces moteurs utilisés sur les vaisseaux Apollo ont une masse à sec de 3,63 kg et une impulsion spécifique de 312 secondes. Les 24 moteurs utilisés pour le contrôle d'attitude sont regroupés en quatre grappes de 4 et quatre grappes de 2 moteurs. Ils fournissent une poussée individuelle de 220 N et peuvent être utilisés pour des impulsions très brève et ou un fonctionnement continu[14].

Énergie[modifier | modifier le code]

L'énergie électrique est fournie par des panneaux solaires en X qui reprennent l'architecture utilisée sur le vaisseau cargo ATV de l'ESA. Chaque branche du X est composé de 3 panneaux solaires utilisant des cellules solaires à triple jonction à l'arséniure de gallium permettant de transformer 30% de l'énergie solaire en électricité soit une amélioration de 17% par rapport aux panneaux de l'ATV. L'ESM fournit ainsi 11 kW au niveau de l'orbite basse terrestre. Une fois déployés les panneaux solaires portent l'envergure du vaisseau à 18,8 mètres. Les quatre ailes disposent de deux degrés de liberté : elles peuvent tourner autour de leur axe pour maximiser l'énergie produite et s'incliner par rapport à l'axe longitudinal du vaisseau de -60° à +55° pour réduire les forces exercées lorsque le vaisseau utilise sa propulsion pour accélère ou décélèrer[14].

Consommables[modifier | modifier le code]

Le module de service comprend les réservoirs de consommables. Six réservoirs d'eau d'une capacité totale de 280 kg alimentent à la fois le système de contrôle thermique et l'équipage en eau de consommation. Le système de stockage et d'alimentation est équipé de résistances chauffantes et de capteurs pour éviter le gel. Quatre réservoirs d'une capacité de 33 kg conservent sous une pression de 275 bars l'oxygène et l'azote utilisés pour renouveler l'atmosphère de la cabine d'équipage[14].

La tour de sauvetage[modifier | modifier le code]

La tour de sauvetage (LAS ou Launch Abort System), le système qui est utilisé pour sauvegarder le vaisseau, si le lanceur est victime d'une défaillance grave susceptible de mettre l'équipage en danger. Doté de son propre système de propulsion et fixé au-dessus du vaisseau, il permet d'écarter le module de commande de la fusée tout en lui faisant prendre suffisamment d'altitude pour que les parachutes puissent être déployés et freiner le vaisseau avant son atterrissage. Il comprend la coiffe et le système de sauvetage proprement dit. La coiffe est une structure en composite qui recouvre et protège la capsule contre la chaleur, la pression de l'air et l'environnement acoustique. Le système de sauvegarde comprend trois moteurs à propergol solide. Le moteur principal d'une poussée de 181 tonnes est chargé d'écarter le module de commande du lanceur. Le moteur de contrôle d'attitude utilise un générateur de gaz à propergol solide avec 8 tuyères montées tout autour de sa périphérie pour orienter l'ensemble. Il permet d'exercer une poussée de 3,2 tonnes dans chacune des huit directions. Le moteur d'éjection est utilisé pour séparer la tour de sauvetage du vaisseau. Si la tour de sauvetage a été activée, cette séparation intervient une fois que le moteur principal a achevé sa tache pour permettre aux parachutes de se déployer. Si le vol se déroule normalement, l'éjection de la tour de sauvetage est réalisée après 6 minutes de vol alors que le vaisseau se trouve à 91 km d'altitude[16].

Missions prévues[modifier | modifier le code]

Le vaisseau Orion est conçu pour pouvoir réaliser des missions au delà de l'orbite terrestre. Il peut également assurer le transport d'équipages vers la Station spatiale internationale[17] au cas où les sociétés chargées du transport des équipages dans le futur ne parviendraient pas à tenir leurs engagements.

Trois vols d'Orion sont actuellement planifiés par la NASA.

  • EFT-1 (5 décembre 2014[18]) - Il s'agit d'un vol d'essai de la capsule Orion avec une maquette du module de service. Lancé par une fusée Delta IV Heavy le vaisseau doit être placé sur une orbite elliptique (apogée de 3000 km) puis effectuer une rentrée à plus de 80 % de la vitesse d'un retour de mission lunaire. Les principaux objectifs sont de tester le bouclier thermique et le système de parachutes. Le lancement a effectivement lieu le 5 décembre 2014, la module étant lancé au moyen d'une fusée Delta IV à deux étages[19].
  • EM-1 (fin 2018) - Il s'agit du premier vol d'Orion dans sa configuration finale, pour une mission inhabitée qui comportera un survol de la Lune. Orion sera lancé par le Space Launch System (SLS) sur une trajectoire elliptique permettant un survol de la face cachée de la Lune à deux cents kilomètres d'altitude. L'Agence spatiale européenne fournira un module de service pour cette mission.
  • EM-2 (2020) - Il s'agit du premier vol habité d'Orion. Le véhicule sera à nouveau lancé par le SLS. Un équipage de quatre astronautes réalisera une mission orbitale autour de la Lune. Ce sera la première mission habitée vers la Lune depuis Apollo 17 en 1972. L'Agence spatiale européenne pourrait fournir un second module de service pour cette mission.

Les missions envisagées dans le cadre du programme Constellation[modifier | modifier le code]

Selon les plans originaux, Orion devait être lancé par Ares I pour les missions vers l'orbite basse (desserte de la Station spatiale internationale) comme pour les missions vers la Lune. Le lanceur lourd Ares V, capable de satelliser 125 tonnes de son côté, aurait été chargé de la mise en orbite du module Altair, chargé d'atterrir sur la surface lunaire et qui joue un rôle analogue à celui du module lunaire (LEM) du programme Apollo. Comme dans le scénario des missions Apollo, l'équipage aurait placé l'ensemble formé par Orion et Altaïr en orbite lunaire puis utilisé le seul Altaïr pour descendre sur le sol lunaire puis en revenir. Toutefois, contrairement aux missions Apollo, c'est l'ensemble de l'équipage qui serait descendu sur le sol lunaire. La NASA retenait à l'époque ce concept éprouvé et donc moins cher qui permet théoriquement de limiter les risques de retard : la NASA doit en effet disposer d'un moyen de transport pour remplacer la navette spatiale américaine dont le retrait est effectif depuis 2011. Depuis 2011, la NASA dépend des vaisseaux russes Soyouz pour l'envoi des astronautes dans l'espace.

Séquence de lancement d'Orion[modifier | modifier le code]

  • Le premier étage hisse le lanceur et sa charge utile jusqu'à approximativement 66,7 kilomètres d'altitude, à une vitesse de Mach 4,5 (1,5 km/s). Après séparation, le premier étage tombe en chute libre jusqu'à 5 km d'altitude puis est freiné d'abord par un parachute pilote puis par 3 parachutes principaux, avant de plonger dans l'océan. Il est récupéré pour être remis en condition et préparé pour un prochain lancement.
  • Le deuxième étage non récupérable est allumé durant 465 secondes, propulsé par le moteur J-2X développant 130 tonnes, pour placer le vaisseau Orion sur une trajectoire orbitale (60 km x 300 km : pour une mission à l'ISS). Il serait détruit par la rentrée dans l'atmosphère.
  • Pour rejoindre la station spatiale internationale ou le véhicule Earth Departure Stage, le vaisseau Orion utilise le moteur de son module de service, pour circulariser son orbite, et rejoindre sa destination.

Notes et références[modifier | modifier le code]

  1. (en) « NASA to Realign Constellation Program Milestones », sur nasa.gov, NASA,‎ 8 août 2008 (consulté le 12 août 2008)
  2. « Rapport final de la commission Augustine sur le site de la NASA », NASA (consulté le 24 janvier 2010), p. 97
  3. « Rapport final de la commission Augustine sur le site de la NASA », NASA (consulté le 24 janvier 2010), p. 61
  4. « Présentation du budget 2011 de la NASA par l'administrateur de la NASA Charlie Bolden », NASA,‎ 1er février 2010
  5. (en) « Obama signs Nasa up to new future », BBC News,‎ October 11, 2010 (lire en ligne)
  6. (en) Mike Wall, « NASA Unveils New Spaceship for Deep Space Exploration », Space.com,‎ 24 May 2011 (lire en ligne)
  7. [PDF] Building transatlantic partnerships in space exploration - The MPCV-SM study - GLEX-2012.15.1.10x12509
  8. (en) « ATV : UK steps up, as ESA commit to ATV Service Module on NASA’s Orion », nasaspaceflight.com (consulté le 9 novembre 2012)
  9. (fr) « L'Europe spatiale engage 10 milliards d'euros », sciences.blogs.liberation.fr (consulté le 9 novembre 2012)
  10. (en)« Orion Development ‘Phased’ To Fit Budget », NASA,‎ 9 janvier 2012
  11. (en) Bart Jansen, « NASA sticks with Orion capsule for deep-space travel », USA Today,‎ 24 May 2011 (lire en ligne)
  12. (en) Chris Bergin, « NASA ESD set key Orion requirement based on Lunar missions », NASASpaceFlight (not associated with NASA),‎ 10 juillet2012 (consulté le 23 juillet 2012)
  13. (en) « Preliminary Report Regarding NASA’s Space Launch System and Multi-Purpose Crew Vehicle », NASA,‎ 2011-01 (consulté le 18 June 2011)
  14. a, b, c et d (en) Patrick Blau, « Orion Spacecraft Overview », sur Spaceflight101.com (consulté le 30 novembre 2014)
  15. (en) « Explore the Exploration Vehicule », NASA,‎ Juillet 2012 (consulté le 4 juillet 2012)
  16. (en) « Orion Flight Test - Exploration Flight Test-1 PRESS KIT/December 2014 », NASA,‎ novembre 2014, p. 17-18
  17. (en) « About Orion », NASA,‎ Juillet 2012 (consulté le 4 juillet 2012)
  18. (en) Robert Z. Pearlman, « NASA Slips First Test Flight of Orion Space Capsule to December », sur space.com,‎ 2014 (consulté le 22 mars 2014)
  19. La Nasa a lancé sa capsule Orion, La Libre Belgique, 5 décembre 2014

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]