Blé

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour l’article homonyme, voir la couleur blé ; la commune burkinabée Blé (Burkina Faso)
Épi de blé

« Blé » est un terme générique qui désigne plusieurs céréales appartenant au genre Triticum. Ce sont des plantes annuelles de la famille des Graminées ou Poacées, cultivées dans de très nombreux pays. Le terme blé désigne également le « grain » (caryopse) produit par ces plantes.

Le blé fait partie des trois grandes céréales avec le maïs et le riz. C'est, avec environ 600 millions de tonnes annuelles, la troisième par l'importance de la récolte mondiale et, avec le riz, la plus consommée par l'homme. Le blé est, dans la civilisation occidentale et au Moyen-Orient, un composant central de l'alimentation humaine. Il a été domestiqué au Proche-Orient à partir d'une graminée sauvage (égilope). Sa consommation remonte à la plus haute Antiquité. Les premières cultures apparaissent au VIIIe millénaire av. J.-C., en Mésopotamie et dans les vallées du Tigre et de l'Euphrate (aujourd'hui l'Irak), dans la région du Croissant fertile.

Types et diversité de blés[modifier | modifier le code]

D'un point de vue économique, les deux variétés importantes actuelles sont des blés à grains nus :

  • le blé dur (Triticum turgidum ssp durum), surtout cultivé dans les régions chaudes et sèches (sud de l'Europe comme le sud de la France et de l'Italie). Le blé dur, très riche en gluten, est utilisé pour produire les semoules et les pâtes alimentaires ;
  • le blé tendre ou froment (Triticum æstivum), de loin le plus important, est davantage cultivé sous moyennes latitudes (par exemple en France, au Canada, en Ukraine). Il est cultivé pour faire la farine panifiable utilisée pour le pain. Ses grains se séparent de leurs enveloppes au battage. Communément dénommée blé tendre ou tout simplement blé, cette espèce a connu une très grande dispersion géographique et est devenue la céréale la plus cultivée, suivie par le riz et le maïs. Il en existe d’innombrables variétés de par le monde. La sélection moderne, initiée à la fin du XIXe siècle par Henry de Vilmorin, s’est concentrée sur trois axes[1] : la résistante aux maladies et aux aléas climatiques, la richesse en protéines, notamment le gluten pour la panification, et bien entendu le rendement. Cette sélection a eu comme contrecoup la quasi-disparition des blés barbus : le gène étant récessif, les nouveaux blés issus de croisements entre blés barbus et blés nus perdent rapidement ce caractère.

Variétés anciennes[modifier | modifier le code]

Sont cultivées avec un regain d'intérêt des blés rustiques et les formes suivantes de blés à grains vêtus (les grains étant fortement enserrés dans leurs enveloppes, après le battage il faut les décortiquer pour pouvoir les utiliser) :

  1. l'épeautre (Triticum aestivum ssp. spelta) ou grand-épeautre, sous-espèce du blé tendre, très apprécié en agriculture biologique en raison de sa rusticité et de la qualité panifiable. De moindre rendement que le blé tendre, il a été écarté de l'agriculture conventionnelle ;
  2. l'engrain ou petit-épeautre, (Triticum monococcum), espèce à grain vêtu également, à faible rendement, très anciennement cultivée, est en partie à l'origine des blés cultivés actuels ;
  3. les amidonniers ou épeautre de Tartarie (Triticum turgidum subsp. dicoccon) : blé vêtu à faible rendement, mais adapté aux sols pauvres et arides.
  4. les blés compacts : Comme leur nom l’indique, leurs épis sont très serrés et courts (avec ou sans barbes). Ils étaient cultivés en Europe dans les situations climatiques les plus difficiles et leur qualité diffère peu des blés ordinaires.

Depuis 1999, l'Inra et Arvalis travaillent avec les chambres d'agriculture pour évaluer les capacités de blés rustiques, mieux adaptés à des systèmes d'agriculture biologique ou raisonnée, pas ou moins consommatrice d'intrants chimiques (engrais et produits phytosanitaires)[2].

L'utilisation de blé hybride est faible : 4 % du blé tendre et 7 % du blé est hybride en France [3], les gains de rendement sont d'environ 10 quintaux et le surcoût équivalent à 5 quintaux. L'adoption du blé hybride nécessite par contre une modification des techniques de culture, notamment une forte réduction de la densité de semis (jusqu'à 75 grains au mètre carré contre plus de 200 en variété classique)[4]. Cette prise de risque est difficile pour les agriculteurs par ailleurs satisfaits par les rendements élevés et stables du blé classique.

Perte de diversité génétique[modifier | modifier le code]

Les progrès de la génétique et des marqueurs génétiques « Microsatellites »[5],[6] permettent[7],[8] d'évaluer[9],[10],[11],[12]et de suivre l'évolution de la biodiversité variétale et intrinsèque à chaque variété cultivée (variété considérée comme gage de l'adaptation des plantes aux maladies et changements environnementaux[13]. Cette variété a augmenté de la préhistoire au XIXème siècle, mais a fortement régressé durant le transfert d'un processus de sélection constant et réalisé par une multitude de paysans vers quelques grands groupes semenciers qui ont accompagné l'industrialisation de l'agriculture puis la « révolution verte » en modifiant significativement les caractéristiques et la variété génétique des blés les plus semés dans les pays industrialisés[14],[15], dont aux États-Unis[16] et en Europe[17]. Par exemple, pour le blé tendre, une étude (2011) lancée sur la diversité génétique des variétés de blés tendres utilisées en France au XXe siècle, basée sur une démarche scientifique innovante validée en 2012 (s'appuyant sur une base de donnéesFrench wheat diversity” et visant à prendre en compte les variétés réellement utilisées par les agriculteurs) a fait le point sur les données disponibles. Elle a confirmé une homogénéisation génétique des variétés cultivées dans ce pays. Un indicateur composite a permis de traduire par année, la surface cultivée pour chaque variété, en croisant cette information avec la proximité génétique de ces variétés entre elles[18] et avec les données existantes sur la biodiversité intravariétale. Pour la FRB qui a piloté l'étude, « Ces résultats scientifiquement validés interrogent sur les modes de prise en compte et d’évaluation de la diversité génétique des plantes cultivées, et alertent sur la vulnérabilité et la résilience de ces cultures dans le contexte d’une hausse de la fréquence d’évènements climatiques critiques pour la production agricole »[19].

Étymologie[modifier | modifier le code]

L'arrivée du blé en France remonte probablement au Ve millénaire av. J.‑C.. Les Celtes s'installent en Gaule vers 2000 avant J.-C., et les Francs se sédentarisent en Gaule romaine vers 580[réf. nécessaire]. Le terme « blé » peut venir du gaulois *mlato, qui devient *blato, « farine » (équivalent du latin molitus, « moulu » ; cette étymologie est cependant contestée et un étymon francique *blâd, « produit de la terre », est proposée venant des Francs, peuple non sédentarisé, arrivé tardivement en Gaule d'une région ne pratiquant pas la culture du blé[réf. nécessaire]. Quel que soit l'étymon, il est aussi à l'origine des verbes anciens français bléer, blaver et emblaver, « ensemencer en blé ») et désigne les grains broyés qui fournissent de la farine.

En français, le terme « blé » a aussi servi à désigner la céréale la plus importante, quelle que soit son espèce, à la manière du mot anglais corn ou grano en italien. C'est ainsi qu'il est encore appliqué aux espèces voisines d'utilisation, notamment l'orge (Hordeum) et le seigle (Secale), le blé noir ou sarrasin (Fagopyrum esculentum, Polygonacée), le blé des Canaries, le blé de Turquie ou blé d'Inde[20] (maïs)[21].

Le nom de genre scientifique Triticum dérive du latin tritus, broiement, frottement car le blé est destiné à la mouture.

Historique[modifier | modifier le code]

Les premières cultures furent à l'origine de bouleversements majeurs pour les sociétés humaines avec la néolithisation. En effet, l'homme sachant produire sa propre nourriture, sa survie devenait moins dépendante de son environnement. L'agriculture marque aussi le début du commerce et de la sédentarisation.

Dans un premier temps, le blé semble avoir été consommé cru puis grillé ou cuit sous forme de bouillie puis de galettes sèches élaborées à partir des grains simplement broyés entre deux pierres (voir carpologie). Le blé s'impose par la suite comme l'aliment essentiel de la civilisation occidentale sous forme d'aliments variés : pain, semoule, pâtes, biscuits...

La culture du blé est beaucoup moins difficile que celle du riz : elle ne demande ni aménagement spécifique du champ ni un lourd travail d'entretien. Entre la période des labours-semis et celle de la moisson, les travaux sont plutôt réduits. Après la récolte, le blé, à la différence du riz, ne demande pas d'opération particulière comme le décorticage. Les régions agricoles reposant fortement sur la culture du blé comptent moins de travailleurs que les régions du maïs et du riz.

La culture du blé s'est imposée en raison de cette facilité de culture mais aussi parce que l'essentiel des progrès agricoles a été expérimenté sur lui. Les instruments aratoires simples ont été remplacés par du matériel de plus en plus perfectionné :

  • le bâton à fouir néolithique : pieu qu'on enfonce dans le sol pour l'ameublir ;
  • la houe, d'abord en tête de pierre puis de métal ;
  • l'araire, tiré tout d'abord par l'homme ou la femme puis par les animaux de trait, ameublissait la terre avant le semis fait à la main ;
  • la charrue retourne la terre et nécessite une traction animale ;
  • la faucille utilisée il y a quelque 12 000 ans dans le Croissant fertile permettait de couper le blé mûr à la main ;
  • des machines à récolter sont apparues chez les Celtes en Gaule. L'Empire romain en perd l'usage, elles sont redécouvertes puis encore perdues au haut Moyen Âge ;
  • la faux est ensuite utilisée à la fin du Moyen Âge ;
  • le battage, effectué tout d'abord au fléau ou à la planche à dépiquer ;
  • le van, ustensile qui permet de séparer la balle du grain par l'utilisation du vent, qui devint plus tard le tarare par l'utilisation d'un courant d'air forcé.

Au Moyen Âge, les fermiers des campagnes à blé européennes utilisaient la charrue à roue et le cheval. Les pays à seigle en restaient à l'araire et aux bovins. Le semoir mécanique et la moissonneuse-batteuse ont été mis au point dans les régions à blé d'Europe et d'Amérique du Nord. Le blé est également le premier à bénéficier de l'usage des amendements (comme dans l'Est de la France) et des engrais chimiques. La sélection des semences permet de meilleurs rendements. Pendant plusieurs millénaires, le blé n'est cultivé qu'en faibles quantités et avec de très bas rendements. Au Moyen Âge et jusque vers 1700, il fallait en moyenne plus de tois heures de travail pour obtenir un kilogramme de blé ; alors, les céréales constituaient la nourriture de base, presque unique. Le blé étant trop cher, c'était le méteil qui servait d'aliment aux Français les plus pauvres (90 % de la population) car il fallait en moyenne deux heures de travail seulement pour un kilogramme de méteil. Dès que les conditions climatiques étaient mauvaises, c'était la famine ; les dernières famines en France datent de la fin du XVIIe siècle, jusqu'en 1709. Alors le prix du blé[22] atteignait le salaire de six à huit heures de travail le kilogramme. On voit le prix du blé diminuer progressivement au cours des XVIIIe et XIXe siècles. Au cours du XXe siècle, les progrès de la technologie permettent d'augmenter formidablement la production céréalière. Le blé est introduit au Nouveau Monde par Juan Garrido, compagnon africain d'Hernan Cortes, qui en ayant trouvé trois graines dans un sac de riz les plante en 1523 dans sa propriété de Coyoacán à proximité de Mexicó[23].

À partir de la seconde moitié du XIXe siècle, l'agriculture s'est mécanisée et rationalisée. Les machines agricoles, tirées au départ par des chevaux puis par des machines à vapeur et enfin, par des engins à moteur, se sont multipliées en particulier dans les pays développés. Depuis 1950, les récoltes de blé s'effectuent avec des moissonneuses-batteuses qui coupent et battent les céréales en une seule opération. De même, des engins agricoles spécialisés existent pour le labour et les semis.

La culture moderne du blé est longtemps restée confinée au bassin méditerranéen et à l'Europe. En Europe, à la fin du XIXe siècle, la culture du blé commence à reculer au bénéfice d'autres cultures. Les travaux de Jean Fourastié montrent que les progrès des techniques de production permettent un rendement meilleur et que les céréales et le blé peuvent être remplacées dans la production et donc la consommation, par une alimentation plus variée. La production à peu près exclusivement rurale et à base de céréales a pu être diversifiée, avec des productions de légumes et de viande, puis une production qui n'est plus presque uniquement à visée alimentaire, un développement de l'industrie et des services. En conséquence, ont pu se généraliser l'économie urbaine, le développement des moyens de transport et les moindres coûts de production en outre-mer. La baisse du prix du blé par rapport aux salaires est, selon Jean Fourastié le fait majeur de l'évolution économique depuis le XVIIe siècle ; le progrès du niveau de vie des Français et de la plupart des occidentaux a son origine dans cette évolution.

La production de blé reprend son essor au cours du XXe siècle grâce aux progrès de la mécanisation, à la sélection de nouvelles variétés productrices et au développement de l'usage de fertilisants. Le blé est, au début du XXIe siècle, une des céréales les plus rentables à l'intérieur du système des prix européens. L'Europe importait plus d'une dizaine de millions de tonnes de blé au moment de la guerre. Depuis, elle est devenue exportatrice. L'excédent final européen atteignait près de 17 millions de tonnes en 1990.

L'AGPB (Association Générale des Producteurs de Blé) est une association spécialisée de la FNSEA (Fédération nationale des syndicats d'exploitants agricoles) qui regroupe l'ensemble des céréaliers. Elle a créé avec l'AGPM (Association générale des producteurs de maïs) et la FOP (Fédération française des producteurs d'oléagineux et de protéagineux) une union syndicale, l'Union des Grandes Cultures.

L'origine du blé[modifier | modifier le code]

Le blé moderne est le résultat d'une construction génétique unique : il contient le génome complet de trois espèces différentes, les chromosomes de ces espèces ne se mélangeant pas lors du crossing over. Il est le résultat d'événements de polyploïdisation intervenus à la suite de croisements entre espèces : chaque génome fut entièrement conservé, ce qui explique l'augmentation de la ploïdie.

  • Le premier événement est la fusion de deux espèces diploïdes présentant 7 paires de chromosomes, Triticum urtatu (génome AA) et une espèce d'Aegilops (génome BB) ; il a eu lieu il y a environ 500 000 ans et a conduit à l'apparition de blés tétraploïdes dont le blé dur, Triticum turgidum (génome AABB, 14 paires de chromosomes).
  • Le second événement a eu lieu au cours de la domestication, il y a environ 9 000 ans, entre un blé tétraploïde cultivé et un blé diploïde (Aegilops tauschii, génome DD). Il a donné le blé tendre, Triticum aestivum, qui est hexaploïde (génome AABBDD, 21 paires de chromosomes)[24].

En France, le CNRA de Versailles (devenu l'INRA - Institut national de la recherche agronomique) et le laboratoire de M. Bustaret ont cherché à comprendre l’origine du blé. Il a fallu vingt ans à M. Jolivet pour réussir la synthèse du blé à partir de l'égilope en augmentant par étapes successives son taux de ploïdie. Pour ce faire, il a exposé la plante et son génome à une toxine, la colchicine (puissant agent anti-mitotique). Il a conservé les plantes passées d’une diploïdie14 chromosomes) à des plantes triploïdes (21 chromosomes), au moyen de croisements, puis à une souche tétraploïde (28 chromosomes) et enfin hexaploïde (42 chromosomes), grâce à la colchicine. Cette variété originale reconstituée en laboratoire a servi à enrichir les variétés avec des gènes inédits ou perdus depuis la domestication.

Parmi les dizaines de milliers de formes de blés cultivés (au moins 30 000), tous les « Speltoidea » à 42 chromosomes, qui fournissent la plupart des blés cultivés tendres (froment), aux grains riches en amidon, descendent de cet ancêtre. Les autres proviennent du stade précédent qui a donné les « Dicoccoida » à 28 chromosomes, qui sont les blés durs, aux épis denses et aux graines riches en gluten.

On ne sait pas exactement comment la sélection a commencé à se faire à la charnière Mésolithique-Néolithique. Il est possible que des épis inhabituellement gros soient spontanément apparus après des accidents de fécondation de l'ancêtre du blé et que, par croisement, des blés de plus en plus productifs aient été sélectionnés.

Le développement de la plante[modifier | modifier le code]

Planche botanique d'un épi de blé

Les blés sont des plantes herbacées annuelles, monocotylédones, à feuilles alternes, formées d'un chaume portant un épi constitué de deux rangées d'épillets sessiles et aplatis.

Les fleurs sont nombreuses, petites et peu visibles car achlamydes. Elles sont groupées en épis situés à l'extrémité des chaumes.

Les tiges sont des chaumes, cylindriques, souvent creux par résorption de la moelle centrale. Ils se présentent comme des tubes cannelés avec de longs et nombreux faisceaux conducteurs de sève. Ces faisceaux sont régulièrement entrecroisés et renferment des fibres à parois épaisses, assurant la solidité de la structure. Les chaumes sont interrompus par des nœuds qui sont une succession de zones d'où émerge une longue feuille, qui engaine d'abord la tige puis s'allonge en un limbe étroit à nervures parallèles.

Parmi les autres caractères de cet appareil végétatif, il existe dans l'épiderme une concentration de multiples amas de silice microscopiques mais très durs. Ils rendent les organes tranchants. Ce fait permet de reconnaître les outils préhistoriques ayant servi aux moissons, car ils présentent de fines rayures.

L'épi de blé est formé de deux rangées d'épillets situés de part et d'autre de l'axe. Un épillet regroupe trois fleurs à l'intérieur de deux glumes. Chaque fleur est dépourvue de pétales, et est entourée de deux glumelles (pièces écailleuses non colorées). Elle contient trois étamines (pièces mâles), un ovaire surmonté de deux styles plumeux (les pièces femelles). La fleur du blé est dite cléistogame, c’est-à-dire que le pollen est relâché le plus souvent avant que les étamines ne sortent de la fleur. Il s'attache alors au stigmate, où peut se produire la fécondation.

Le blé est une plante presque strictement autogame. En espaçant les variétés de seulement 2,5 m, on constate une pollinisation croisée limitée à 0,03 %[25]. En effet, à cause du caractère cléistogame de la fleur, l'autofécondation est le mode de reproduction le plus fréquent chez les blés : ce sont les anthérozoïdes (cellules reproductrices mâles) issus du pollen d'une fleur qui fécondent l'oosphère et la cellule centrale du sac embryonnaire de l'ovaire de cette même fleur (les cellules sexuelles femelles sont protégées dans un sac embryonnaire fermé au sein d'un ovule).

Après fécondation, l'ovaire donnera le grain de blé. Dans le cas du blé, le grain est à la fois le fruit et la graine. En effet, Les enveloppes du fruit sont soudées à celles de la graine. On appelle ce type de fruit un caryopse.

Au moment du battage, les glumes et les glumelles sont perdues. Ses réserves sont contenues dans l'albumen (on dit que la graine est albuminée), composé à 70 % d'amidon et 15 % de gluten (une protéine). L'embryon n'a qu'un cotylédon (le blé est une plante monocotylédone).

Les principaux caractères des espèces de blé que l'homme a cherché à sélectionner sont : la robustesse de l'axe de l'épi (qui ne doit pas se casser lors de la récolte), la séparation facile des enveloppes du grain, la grande taille des grains et la compacité des épis (plus maniable que l'épi lâche).

La sélection d'une plante cultivée se base sur l'ensemble de gènes existants dans l'espèce considérée, ce qui justifie l'intérêt de la préservation de la biodiversité. Pour certaines propriétés désirées, telles que la résistance aux maladies fongiques ou virales, la diversité au sein du groupe de gènes du blé n'est pas suffisante. Pour cette raison, il a été complété par de nouveaux gènes. Un croisement entre le blé et ses plantes parentes ne se fait pas naturellement. Par conséquent, des techniques de culture tissulaire et de cytogénétique (mais pas de génie génétique) doivent être employées pour introduire du matériel génétique exogène dans le génome du blé. C'est ainsi qu'on a pu créer un hybride entre le blé et le seigle nommé "triticale".

La création et l'utilisation de variétés de blé génétiquement modifié est techniquement possible. Cependant, cette technique n'a pas été utilisée à grande échelle pour le blé.

La graine[modifier | modifier le code]

Germe de blé
Valeur nutritionnelle moyenne
pour 100 g
Apport énergétique
Joules 1313 kJ
(Calories) (312 kcal)
Principaux composants
Glucides 30,6 g
- Amidon  ? g
- Sucres 26,0 g
- Fibres alimentaires 17,7 g
Protides 28,7 g
Lipides 9,20 g
- Saturés 1288 mg
- Oméga-3 335 mg
- Oméga-6 3671 mg
- Oméga-9 1114 mg
Eau 11,7 g
Cendres Totales 4,20 g
Minéraux & Oligo-éléments
Calcium 49 mg
Chrome 0,0058 mg
Cobalt 0,0017 mg
Cuivre 1,1 mg
Fer 8,6 mg
Magnésium 290 mg
Manganèse 16 mg
Nickel 0,080 mg
Phosphore 1000 mg
Potassium 1060 mg
Sélénium 0,003 mg
Sodium 5,0 mg
Zinc 18 mg
Vitamines
Provitamine A 0,062 mg
Vitamine B1 2,0 mg
Vitamine B2 0,720 mg
Vitamine B3 (ou PP) 4,5 mg
Vitamine B5 1,0 mg
Vitamine B6 0,492 mg
Vitamine B8 (ou H) 0,017 mg
Vitamine B9 0,520 mg
Vitamine E 25 mg
Vitamine K 0,131 mg
Acides aminés
Acide aspartique 2790 mg
Acide glutamique 5250 mg
Alanine 2140 mg
Arginine 2310 mg
Cystine 460 mg
Glycine 2160 mg
Histidine 840 mg
Isoleucine 1320 mg
Leucine 2170 mg
Lysine 1900 mg
Méthionine 560 mg
Phénylalanine 1180 mg
Proline 1710 mg
Sérine 1520 mg
Thréonine 1550 mg
Tryptophane 330 mg
Tyrosine 1010 mg
Valine 1680 mg
Acides gras
Acide palmitique 1172 mg
Acide stéarique 26 mg
Acide arachidique 60 mg
Acide palmitoléique 45 mg
Acide oléique 1114 mg
Acide linoléique 3671 mg
Acide alpha-linolénique 335 mg

Source : Souci, Fachmann, Kraut : La composition des aliments. Tableaux des valeurs nutritives, 7e édition, 2008, MedPharm Scientific Publishers / Taylor & Francis, ISBN 978-3-8047-5038-8

Le grain de blé est un fruit particulier, le caryopse. L'enveloppe externe est adhérente à la matière végétale de la graine et la protège des influences extérieures. Au cours de la mouture, les enveloppes (téguments) sont parfois séparées du grain (embryon + albumen) et commercialisées en tant que son. Le grain contient 65 à 70 % d'amidon ainsi qu'une substance protéique (le gluten) dispersée parmi les grains d'amidon. Le gluten est responsable de l'élasticité de la pâte malaxée ainsi que de la masticabilité des produits à base de céréales cuits au four. Cette visco-élasticité permet de faire du pain de qualité : les bulles de CO2 dégagées lors de la dégradation anaérobie de l'amidon par les levures sont piégées dans le réseau de gluten à la fois tenace et élastique (la pâte « lève »).

L'embryon ou germe est la partie essentielle de la graine permettant la reproduction de la plante : en se développant il devient à son tour une jeune plante. Contenant beaucoup de matières grasses (environ 15 %) ou d'huiles, l'embryon pourrait donc rancir et est souvent éliminé lors du nettoyage des grains. Les germes de céréales sont vendus dans les boutiques de diététique car ils sont considérés comme très nutritifs en raison de leur haute teneur en sels minéraux, vitamines, protéines et huiles. Le germe de blé, en diététique, fournit la majeure partie des vitamines B, hautement spécialisées dans la défense et l'entretien du système nerveux. Il apporte aussi, en quantité, les vitamines A, C, E, du zinc et des acides aminés.

Si l'on compare les deux principales variétés de blé, le blé dur et le blé tendre, le qualificatif de dur est d'une part utilisé dans une logique classificatoire tenant compte de la structure génétique de la variété, et d'autre part utilisé pour décrire d'un point de vue mécanique la résistance du grain à la mouture (à la mouture, un grain dur dont une partie de l'amidon est vitreux donnera une poudre granuleuse, au lieu d'une farine poudreuse). Ces deux aspects, génétiques et mécaniques, ne sont pas entièrement dépendants. Ainsi un blé génétiquement dur sera le plus souvent, mécaniquement, dur mais pourra aussi être éventuellement tendre. Les grains tendres d'un blé dur sont qualifiés de mitadinés.

Un blé tendre peut être appelé blé de force lorsque son taux de protéines est élevé et qu'il améliore la force boulangère de la pâte à pain. Parfois une traduction inexacte des variétés cultivées en Amérique du Nord comme le hard red winter fait penser que ce sont des blés durs, en fait ce sont des blés de force.

Les cultivars sont les variations des deux espèces qui sont effectivement cultivées dans les champs[26].

La paille et le chaume[modifier | modifier le code]

La paille est la partie de la tige des graminées coupée lors de la moisson et rejetée, débarrassée des graines, sur le champ par la moissonneuse-batteuse, dans le cas de récolte mécanisée. La partie de la tige, de faible hauteur qui reste au sol s'appelle le chaume (en botanique, on appelle chaume la tige des graminées).

La paille peut être récoltée mais cette pratique est plutôt déconseillée[27]. Les principaux usages sont la litière pour animaux (chevaux, bovins, porcins et ovins notamment), qui forme ainsi la base du fumier pouvant être utilisé comme fertilisant biologique, le fourrage pour les ruminants mais de qualité médiocre (en cas de nécessité) et, pratique en renouveau, de matériau pour la construction des bâtiments agricoles ou de véritables maisons. Le torchis peut inclure de la paille.

Elle peut aussi être enfouie, laissée sur place et ainsi contribuer à la vie biologique du sol et à la conservation de ses qualités agronomique (taux de matière organique et aération par les vers de terre) ou brûlée sur place. Cela évite les opérations de récolte et de transport, relativement coûteuses, surtout dans les régions céréalières sans élevage (comme le bassin parisien).

La hauteur du chaume dépend du réglage en hauteur de la barre de coupe de la moissonneuse-batteuse, selon principalement si l'on désire ou non récolter un maximum de paille. Cependant, sur un terrain comportant des trous ou ornières, le réglage sera haut afin d'éviter de casser la barre de coupe.

Certaines moissonneuses-batteuses sont équipées d'un ou de deux broyeurs (ou hache-paille) :

  • à l'avant de la machine, sous la barre de coupe, entre celle-ci et les roues avant ;
  • à l'arrière, à la sortie de la paille.

Le broyeur avant facilite le déchaumage en hachant le chaume. Le broyeur arrière hache et éparpille la paille, idéalement de façon uniforme.

Après la moisson, on procède au déchaumage, qui consiste en une façon superficielle, souvent à l'aide d'outil à disques, ou déchaumeuse, destinée à accélérer la décomposition du chaume et des restes de paille. Ce déchaumage accompagne éventuellement un semis de couvert[28]. Le déchaumage a également pour fonction de permettre la germination des graines non récoltées et de certaines adventices, ce qui permet de réaliser un faux semis. Ainsi ces graines ne viendront pas concurrencer une future autre culture. Il est aussi possible de ne pas déchaumer et de réaliser un semis direct d'un couvert ou de la culture suivante.

La culture du blé[modifier | modifier le code]

Champ de blé en Seine-et-Marne

Les systèmes de cultures ont favorisé divers types de blé :

  • le blé d'hiver est semé à l'automne. Il caractérise les régions méditerranéennes et tempérées ;
  • le blé de printemps est semé au printemps et signale les pays à hiver plus rude. La différence principale avec le blé d'hiver est que le blé de printemps supporte assez difficilement les températures basses. Le blé de printemps n'a pas besoin de vernalisation, il y a peu ou pas de tallage. C'est grâce à lui que la Sibérie occidentale et le Canada sont devenus de gros producteurs.

Le semis[modifier | modifier le code]

L'installation d'une culture de blé est très importante puisqu'elle conditionne le développement et la croissance des plantes. Le succès de cet installation dépend :

  • du choix de la variété adaptée au climat et au sol de la zone ;
  • de la date du semis ;
  • de la densité de semis ;
  • de la profondeur de semis.

Le choix de la variété[modifier | modifier le code]

L'agriculteur cultive généralement plusieurs variétés de blé. Cette diversité lui permet d'étaler son travail et de limiter les risques liés au climat et aux différents ennemis des cultures (ravageurs et maladies). Les critères de choix possible sont donc les critères techniques :

  • le rendement : ce critère est moins important pour les parcelles à faible potentiel ;
  • la valeur boulangère : les agriculteurs ont parfois des contrats imposants une qualité technologique stricte ;
  • la précocité : en fonction du climat local et du calendrier des travaux ;
  • la résistance de la culture au froid, aux maladies, à la verse et à la germination sur pied ;
  • les exigences climatiques (besoins de somme de températures).

La date de semis[modifier | modifier le code]

Elle dépend de plusieurs facteurs :

  • du précédent ;
  • de la variété ;
  • des conditions climatiques ;
  • de l'état du sol ;
  • de stratégie de contournement de pathologie ou d'adventice ;
  • du système de production ; disponibilité de l'agriculteur...

Les blés d'hiver ont besoin de périodes de froid assez prolongées pour acquérir l'aptitude à fleurir : c'est le phénomène de vernalisation. Il faut donc procéder à un semis précoce avant l'hiver.

La densité de semis[modifier | modifier le code]

Ce qui importe ce n'est pas la quantité de semences à l'hectare mais le nombre d'épis voire le nombre de plantes par mètres carré. C'est-à-dire le peuplement à réaliser. Elle varie selon :

  • le type de semence : classique ou hybride ;
  • le climat ;
  • le type de sol ;
  • la faculté germinative ;
  • les conditions de semis ;
  • la date de semis ;
  • les pertes à la levée et durant l'hiver.

La levée[modifier | modifier le code]

Au début de la germination, la semence de blé est sèche. Après humidification, il sort une radicule (première petite racine) puis un coléoptile. Une première feuille paraît au sommet du coléoptile. La germination est uniquement déterminée par le cumul journalier de la température positive. Il faut en moyenne 30 degrés jour (ou Dj) pour la germination, soit trois jours à 10 °C ou 10 jours à 3 °C, et environ 150 Dj pour la levée.

L'axe portant le bourgeon terminal se développe en un rhizome (tige souterraine) dont la croissance s'arrête à 2 cm en dessous de la surface du sol. Il apparaît un renflement dans la partie supérieure du rhizome qui grossit et forme le plateau de tallage.

La levée commence quand la plantule sort de terre et que la première feuille pointe au grand jour son limbe. Un désherbage peut être pratiqué en pré-semis (juste avant le semis) ou en post-semis pré-levée (entre le semis et la levée).

Le rythme d'émission des feuilles est réglé par des facteurs externes comme la durée du jour et le rayonnement au moment de la levée. On exprime le nombre de feuilles en fonction des cumuls de températures depuis le semis (voir aussi phyllotherme). Le phyllotherme est la durée exprimée en somme de température séparant l'apparition de deux feuilles successives. Il est estimé à 100 Dj et varie entre 80 Dj (semis tardif) à 110 Dj (semis précoce). Le blé a besoin d'une période de froid d'environ 100 jours, ce qui explique le fait qu'il n'y a pas de développement de la culture du blé dans les régions équatoriales.

Le blé murit plus vite dans une température de 30 °C et plus. Conséquemment ses épis portent moins de grains et ces derniers sont plus petits. D'autre part, un réchauffement local de 2 °C diminuerait la période de croissance de 9 jours et réduirait les rendements de 20 %. Cette diminution de la récolte est particulièrement inquiétante pour l'Inde, pays tropical et 2e producteur mondial derrière la Chine[29].

La période « quelques feuilles » peut être le moment de désherber et parfois de traiter contre les insectes (larves de taupins, tipules) en agriculture conventionnelle.

Le stade « 3 feuilles »[modifier | modifier le code]

Le stade « 3 feuilles » est une phase repère pour le développement du blé. Des bourgeons se forment à l'aisselle des feuilles et donnent des pousses – ou talles. Chaque talle primaire donne des talles secondaires. Apparaissent alors, à partir de la base du plateau de tallage, des racines secondaires ou adventives, qui seront à l'origine de l'augmentation du nombre d'épis.

Le tallage[modifier | modifier le code]

Le tallage commence à la fin de l'hiver et se poursuit jusqu'à la reprise du printemps. Il est marqué par l'apparition d'une tige secondaire, une talle, à la base de la première feuille. Les autres feuilles poussent elles aussi leurs talles vertes. Au moment du plein tallage, la plante est étalée ou a un port retombant.

À l'intérieur de la tige, on peut trouver ce qu'on appelle la pointe de croissance. Elle commence à ressembler à un épi de blé. Initialement, la pointe est sous terre, protégée contre le gel. Au fur et à mesure de la reprise de la végétation, la pointe de croissance va s'élever dans la tige.

La montaison[modifier | modifier le code]

La montaison se produit de fin avril à fin mai en France. Au sommet du bourgeon terminal se produit le début du développement de l'épi. Parallèlement, on assiste à l'allongement des entrenœuds. Le stade « épi à 1 cm » du plateau de tallage est caractérisé par une croissance active des talles. Le plant de blé a besoin, durant cette phase, d'un important apport d'azote.

À la fin de la montaison apparait la F1. Ce terme désigne la dernière feuille sortie. En semis dense, cette feuille est essentielle car elle va à elle seule contribuer à 75 % du rendement en grains. Juste avant la maturité, les plants trop densément semés se concurrençant entre eux, c'est même généralement la seule feuille encore vivante. Lorsque cette feuille est touchée, le poids de la récolte en grain devient vite désastreux. En effet, avec des plants serrés le poids unitaire des grains est déjà faible. De surcroît, cette faible distance entre chaque plant facilite la propagation des maladies. Au moindre stress, la céréale risque alors de donner des grains de très faible poids. On prévient dans l'immédiat cette baisse du rendement avec l'épandage préalable d'engrais et de pesticides : s'installe ensuite un phénomène de dépendance croissante à ces produits.

L'épiaison[modifier | modifier le code]

L'épiaison se produit en mai ou juin en France, lorsque la gaine éclatée laisse entrevoir l'épi qui s'en dégage peu à peu (on parle de gonflement). Pour les variétés barbues comme le blé dur, c'est le moment où apparaissent les extrémités des barbes à la base de la ligule de la dernière feuille. Avant l'apparition de l'épi, on peut voir un gonflement de la gaine.

À ce stade, le nombre total d'épis est défini, de même que le nombre total de fleurs par épi. Chaque fleur peut potentiellement donner un grain (par exemple 25 grains par épi), mais il est possible que certaines fleurs ne donnent pas de grain, en raison de déficit de fécondation par exemple.

La floraison[modifier | modifier le code]

Fleurs de blé.

La floraison s'observe à partir du moment où quelques étamines sont visibles dans le tiers moyen de l'épi, en dehors des glumelles. Quand les anthères apparaissent, elles sont jaunes ; après exposition au soleil, elles deviennent blanches. Le grain de pollen des blés est monoporé et sa dispersion est relativement faible.

À la fin de la floraison, quelques étamines séchées subsistent sur l'épi. Environ quinze jours après la floraison, le blé commence à changer de couleur : du vert il passe au jaune, doré, bronze et rouge.

La formation du grain[modifier | modifier le code]

Blé mur.

Le cycle s'achève par la maturation qui dure en moyenne 45 jours. Les grains vont progressivement se remplir et passer par différents stades tels que le stade laiteux, puis pâteux, au cours desquels la teneur en amidon augmente et le taux d'humidité diminue. Durant cette phase, les réserves migrent depuis les parties vertes jusqu'aux grains. Quand le blé est mûr, le végétal est sec et les graines des épis sont chargées de réserves.

La formation du grain se fait quand les grains du tiers moyen de l'épi parviennent à la moitié de leur développement. Les grains se développent en deux stades :

  • le stade laiteux où le grain vert clair, d'un contenu laiteux, atteint sa dimension définitive ;
  • le stade pâteux où le grain, d'un vert jaune, s'écrase facilement.

Les glumes et les glumelles sont jaunes striées de vert, les feuilles sèches et les nœuds de la tige encore verts.

Puis le grain mûrit : brillant, durci, il prend une couleur jaune. À maturité complète, le grain a la couleur typique de sa variété et la plante est sèche. À sur-maturité, le grain est mat et tombe tout seul de l'épi.

Dans les conditions favorables, une seule semence peut produire une centaine de nouveaux grains.

Les maladies du blé[modifier | modifier le code]

Les maladies rencontrés au niveau de la semence peuvent être localisées à l'extérieur ou à l'intérieur du grain.

Maladies à l'extérieur du grain[modifier | modifier le code]

  • La carie : Les spores sont fixées dans les poils de la brosse et dans le sillon. Elles germent et pénètrent dans le coléoptile du blé avant la levée. C'est à partir du stade deux feuilles que le blé devient résistant. À ce stade, le mycélium ne peut plus pénétrer dans la plantule dont les parois sont trop épaisses.

Les premiers symptômes apparaissent à la montaison. Les plantes affectées sont de couleur bleutée et peuvent être plus courtes. La maladie se manifeste plus nettement après l'épiaison. Les tiges et l’épi ont toujours une couleur verte, bleuâtre. Les glumes s'écartent pour laisser apparaître des grains de forme arrondie et de couleur vert olive. À maturité, ces grains brunissent et donnent à l'épi un aspect ébouriffé. Un grain carié peut contenir jusqu'à neuf millions de spores alors que seulement 20 à 40 spores suffisent à la contamination. Ces spores peuvent se conserver jusqu’à 5 ans dans un sol. À noter que ce champignon a deux modes de contamination : par la semence et par le sol.

  • La septoriose : Les spores sont présentes sur le péricarde (l'enveloppe ou glume) quand le grain germe. Le mycélium se développe et l'attaque se fait sur le coléoptile. On a des apparitions de tâches brunes et ovales qui entraînent une destruction de la semence. On parle de fonte de semis.
  • La fusariose :
  1. Fusarium nivale : les spores du champignons se conservent à la surface des graines. Le mycélium va se développer et attaquer les jeunes plantules. On a un blocage de la croissance. Les jeunes feuilles s'enroulent et se nécrosent ;
  2. Fusariose roseum : les spores se conservent à la surface du grain et à l'intérieur. Le mycélium se développe et les plantules vont se colorer en lie-de-vin puis se nécroser.

Maladies à l'intérieur du grain[modifier | modifier le code]

  • Le charbon nu : les spores sont présentes sur le coléoptile et le colorisent. Un grain contaminé semble normal mais à la germination le mycélium envahit la plante (on a une contamination intérieure). À la floraison, les épis sont noirs. Ces derniers sont transformés en spores.

Charançon[modifier | modifier le code]

Le blé de consommation peut être infesté de divers charançons dont le charançon du blé.

Les traitements[modifier | modifier le code]

Liste des produits phytopharmaceutiques autorisés en France pour lutter contre les parasites du blé : Ministère de l'agriculture.

Production et commercialisation[modifier | modifier le code]

Les débouchés[modifier | modifier le code]

Types de pain

La consommation humaine (pain, biscuiterie et tous les produits à base de farine) reste le débouché principal (58 % de la récolte), suivie de l'alimentation animale (34 %). Les 8 % restants représentent les usages industriels (amidonnerie et glutennerie). Le blé peut également servir de substrat pour produire du biocarburant, le bioéthanol[30]. Il est également utilisé pour alimenter des chaudières[31].

Le blé tendre, ou froment, est une matière première de base pour la fabrication du pain, en raison de sa composition en gluten supérieure aux autres céréales. Il doit passer par le secteur de la meunerie pour subir la transformation en farine.

Le pain est un aliment qui résulte de la cuisson d'une pâte obtenue par pétrissage d'un mélange composé de farines de blé panifiables correspondant à des types officiellement définis, d'eau potable et de « sel de cuisine », et soumis à un agent de fermentation : la levure.

Le blé dur est à la base de la fabrication des semoules, utilisées pour la préparation du couscous ainsi que des pâtes alimentaires (toutefois les pâtes chinoises au blé sont fabriquées avec du blé tendre, de même qu'elles l'étaient traditionnellement dans l'Europe du Nord).

Les statistiques de la production mondiale[modifier | modifier le code]

Répartition de la production mondiale en 2000

La production mondiale de tous les types de blés est de 660 millions de tonnes lors de la campagne 2009-2010, c'est-à-dire près de 100 kg par habitant, pour l'ensemble de la population mondiale. En volume de production, c'est la quatrième culture mondiale derrière la canne à sucre, le maïs et le riz. Les statistiques mondiales sont calculées par le Conseil International des Céréales[32]. L'amélioration mondiale des techniques culturales et la sélection génétique (création de la variété Norin 10 par exemple) ont conduit à un accroissement considérable des rendements moyens, passant de moins de 10 q/ha en 1900 - soit 1 tonne par hectare - à 29 q/ha en 2010. On pense désormais que la progression des rendements peut se poursuivre assez longtemps encore.
Le développement de l'irrigation, la réduction des pertes, l'amélioration des infrastructures (routes, capacités de stockage) constituent des moyens qui peuvent encore être mis en œuvre dans de nombreuses régions pour augmenter la production.

La Chine vient au premier rang avec 16,9 % de la production mondiale, devant l'Inde (11,8 %), la Russie (9,1 %), les États-Unis (8,8 %) et la France (5,6 %) mais l'ensemble de l'Union Européenne à 27 est le premier producteur mondial avec 143 millions de tonnes en 2010. L'Amérique du Sud connaît des rendements stables avec 20 q/ha, l'Afrique et le Proche-Orient 10 q/ha (avec une grande variabilité selon les années au Maghreb), l'Égypte et l'Arabie saoudite ont atteint, en culture irriguée, 35 à 40 q.
En Europe, des rendements très élevés sont obtenus en culture intensive. Le rendement moyen est passé de 30 à 60 quintaux par hectare durant les 30 dernières années, soit une progression moyenne de 1 quintal/ha/an. En France, les gains sont remarquables : la production actuelle s'élève à 100 quintaux/hectare chez les agriculteurs les plus performants. L'augmentation des rendements et des surfaces cultivées ont conduit à un fort accroissement de la production qui atteignait 275 millions de tonnes en 1965 et 600 en 1998. La courbe de la productivité dans les pays de culture intensive serait parvenue à un plateau, le débat n'est pas tranché.

Données de Production 2009
Source: FAOSTAT Interrogation de FAOSTAT du 31 mars 2011

Pays Surface
(hectares)
Rendement
(kg/ha)
Production
(tonnes)
% du total
Drapeau de la République populaire de Chine Chine 24 210 075 4 748 114 950 296 16,9 %
Drapeau de l'Inde Inde 28 400 000 2 841 80 680 000 11,8 %
Drapeau de la Russie Russie 26 632 900 2 318 61 739 750 9,1 %
Drapeau des États-Unis États-Unis 20 181 081 2 989 60 314 290 8,8 %
Drapeau de la France France 5 146 600 7 447 38 324 700 5,6 %
Drapeau du Canada Canada 9 539 000 2 780 26 514 600 3,9 %
Drapeau de l'Allemagne Allemagne 3 226 036 7 808 25 190 336 3,7 %
Drapeau du Pakistan Pakistan 9 046 000 2 657 24 033 000 3,5 %
Drapeau de l'Australie Australie 13 507 000 1 603 21 656 000 3,2 %
Drapeau de l'Ukraine Ukraine 6 752 900 3 093 20 886 400 3,1 %
Drapeau de la Turquie Turquie 8 026 898 2 566 20 600 000 3,0 %
Drapeau du Kazakhstan Kazakhstan 14 329 400 1 190 17 052 000 2,5 %
Drapeau : Royaume-Uni Royaume-Uni 1 814 000 7 927 14 379 000 2,1 %
Drapeau de l'Iran Iran 6 647 367 2 029 13 484 457 2,0 %
Drapeau de la Pologne Pologne 2 346 200 4 173 9 789 586 1,4 %
Drapeau de l'Égypte Égypte 1 321 751 6 448 8 522 995 1,2 %
Drapeau de l’Argentine Argentine 4 334 780 1 747 7 573 254 1,1 %
Drapeau de l'Ouzbékistan Ouzbékistan 1 400 000 4 741 6 637 700 1,0 %
Drapeau du Maroc Maroc 2 977 600 2 139 6 371 430 0,9 %
Drapeau de l'Italie Italie 1 795 500 3 532 6 341 000 0,9 %
Drapeau de l'Afghanistan Afghanistan 2 500 000 2 026 5 064 000 0,7 %
Drapeau de l'Espagne Espagne 1 767 800 2 713 4 796 800 0,7 %
Drapeau de l'Algérie Algérie 1 848 575 1 598 2 953 117 0,4 %
Monde 225 437 694 3 025 681 915 838 100,00 %

Les stocks[modifier | modifier le code]

Article détaillé : Stockage des céréales.

Les exportations et les importations[modifier | modifier le code]

Le blé est la première céréale sur le plan du commerce international. 127 millions de tonnes de blé sont échangées en 2010.

Principaux pays exportateurs
2008 (données FAOSTAT) Importance en volume
États-Unis 22,9 %
France 12,4 %
Canada 12,0 %
Russie 8,9 %
Argentine 6,7 %
Australie 6,3 %
Ukraine 5,7 %

Les importations mondiales atteignent 128 millions de tonnes en 2008 (source FAO). 36 pays importent plus de 1 Mt annuellement et représentent 80 % du total. Parmi ces pays, 13 réalisent 51,9 % du total, ce sont dans l'ordre décroissant en volume : Égypte (6,5 %), Algérie (5,4 %), Brésil (4,7 %), Japon (4,5 %), Italie (4,2 %), Iran (4,1 %), Espagne (3,6 %), Indonésie, Pays-Bas, Maroc, Turquie, Mexique et la Belgique.

Le blé en France[modifier | modifier le code]

Champ de blé en avril, en Bourgogne

La production française de blé tendre atteint 36 millions de tonnes[33], soit 26 % de la production de l'Union européenne (138 mt)[33].

En France, en 2012, un hectare de blé intensif produit environ 7 tonnes (par an), qui rapportent environ 1 750 € (prix de début de campagne 250 €/tonne). Durant la période 2006-2012, les prix du blé (rendu Rouen) ont varié entre 100 et 280 euros la tonne[34]. Le blé "bio" se vend plus cher et économise les achats de produits phytosanitaires, mais ses rendements sont plus faibles, entre 20 et 40 %[35]. Les producteurs reçoivent également une subvention à l'hectare dans le cadre de la PAC.

Les blés panifiables dominent avec 92 % des surfaces en blé tendre[36]. Le paysage variétal reste assez stable par rapport à 2010, avec le maintien des deux variétés de tête, Apache et Premio[37]. En France, ces dernières années, le rendement du blé a peu progressé[38],[39].

Un problème est la perte de diversité génétique qui pourrait limiter les adaptations futures du blé aux maladies et au dérèglement climatique, par exemple au sein des blés tendres[19].

Le marché du blé[modifier | modifier le code]

Le marché mondial du blé suit plusieurs caractéristiques propres aux matières premières agricoles. La première est une relative instabilité et imprédictibilité des prix à court et moyen terme. L'offre mondiale de blé varie d'année en année en fonction des choix de semis des agriculteurs, des aléas climatiques, phytosanitaires, politiques et économiques, en étant lissée en partie par l'existence de stocks[40]. La demande mondiale en blé est relativement stable et inélastique face à l'offre. Cette inélasticité de la demande face à une offre fluctuante crée l'instabilité du marché. Cette instabilité s'est par exemple traduite par la hausse des prix de 2007-2008, amplifiée par des phénomènes spéculatifs. Cette crise, lors de laquelle le prix du blé a doublé, a eu comme conséquence une importante crise alimentaire.

Le prix du blé est fortement corrélé aux prix des autres céréales comme l'orge, le maïs, un peu moins avec celui du riz, et il est aussi un peu corrélé aux prix des oléagineux comme le soja et le colza. Mais cela n'est pas dû à un phénomène de substitution à court terme de la consommation de blé par d'autres céréales, qui est faible : d'une part, les habitudes alimentaires l'empêchent, d'autre part, plusieurs céréales sont produites dans les mêmes zones et une mauvaise récolte de l'une augure souvent une mauvaise récolte de l'autre.

La deuxième caractéristique importante du marché du blé, aussi commune aux autres matières premières, est sa baisse tendancielle sur le long terme, en monnaie constante, causée principalement par les gains de productivité. Par exemple, un seul agriculteur en France peut aujourd'hui produire 10 tonnes de blé par hectare sur une exploitation de 100 ha, soit 1 000 tonnes de production nette, alors qu'au début du siècle, il n'en aurait produit que 1 t/ha sur 10 ha, soit 10 t (il s'agit d'un exemple en production nette, les gains de productivité sont moins importants car les coûts ont aussi augmenté). Cette baisse tendancielle explique que le nombre d'agriculteurs soit moins important qu'auparavant dans les pays développés (pour générer un revenu il faut produire davantage, donc disposer de plus de surface), et provoque une dégradation des termes de l'échange pour les pays producteurs.

Certains économistes agricoles[41] se demandent si cette baisse tendancielle n'a pas été remplacée, depuis la campagne 2007, par un rattachement aux marchés de l'énergie, sensible depuis que l'industrie des biocarburants est devenue un débouché significatif pour le maïs américain (plus de 100 millions de tonnes transformés en bioéthanol) et pour le colza européen (80 % de l'huile étant destinée au biodiesel), le marché du blé étant touché indirectement. La transformation du blé en bioéthanol concerne actuellement 4.2 millions de tonnes annuellement dans l'Union européenne[42], ce qui reste une utilisation mineure.

Du point de vue technique, le marché du blé est composé de plusieurs marchés nationaux tous connectés entre eux. Les marchés peuvent être "physiques", par exemple « livré Rouen » - le port français d'exportation par excellence[43], ou virtuels, correspondant à des cotations de « futures » sur les places de marché électroniques régulées (Euronext[44] et CBOT[45]). Les fluctuations journalières dépendent des révisions des estimations de récoltes du CIC[32] ou d'instances nationales comme l'USDA ou FranceAgriMer, des achats intérieurs et de la demande internationale (Cf. les appels d'offre égyptiens et algériens). L'essentiel du trading est assuré par les maisons de négoce spécialisées comme Cargill ou Invivo.

Lors des crises de 2007-2008 et de 2010-2011, certains dirigeants français ont rendu la spéculation responsable de la volatilité des prix constatée. Un rapport exhaustif commandé à des experts nuance le sujet[46]. La régulation des marchés agricoles constitue un des sujets de discussion du G20.

Par nature, les marchés à termes sont spéculatifs, puisque déterminant des prix futurs, mais ce sont des instruments de couverture essentiels aux professionnels du négoce. Les règles très précises de fonctionnement (dépôt de garantie, liquidation journalière des positions, interdiction de position dominante, etc.) peuvent contrôler ces marchés.

Calendrier[modifier | modifier le code]

Dans le calendrier républicain français, le 29e jour du mois de Messidor est dénommé jour du Blé[47].

Notes et références[modifier | modifier le code]

  1. http://covoiturage.univ-mrs.fr/upload/p210/selectionduble.pdf
  2. associer des itinéraires techniques de niveau d’intrants variés à des variétés rustiques de blé tendre : évaluation économique, environnementale et énergétique, Courrier de l'environnement de l'INRA, no 55, février 2008
  3. http://www.terre-net.fr/dossier_special/cereales-2013/?t=1377004167463&section=home&utm_campaign=DScereales-2013&utm_source=Fil-Info&utm_medium=Dossier#91147
  4. http://www.valeursboulangeres.fr/le-bl-hybride-face-son-destin-art211170-15.html
  5. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023 (résumé)
  6. Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosman B, Ganal MW (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73
  7. Guadagnuolo R, Savova Bianchi D, Felber F (2001) Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome 44:610–621 (résumé)
  8. Manifesto MM, Schlatter AR, Hopp HE, Suarez HE, Dubcovsky J (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers ; Crop Sci 41:682–690
  9. Huang XQ, Borner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat ( Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707
  10. Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco A (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207 (résumé et extrait)
  11. Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592
  12. Schoen DJ, Brown AH (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627 (résumé)
  13. Allard RW (1996) Genetic basis of the evolution of adaptedness in plants. Euphytica 92:1–11
  14. Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bread wheat germplasm during the 20th century. Mol Breed 9:1–11
  15. Reynolds, M. P., Rajaram, S., & Sayre, K. D. (1999). Physiological and genetic changes of irrigated wheat in the post–green revolution period and approaches for meeting projected global demand. Crop Science, 39(6), 1611-1621 (résumé).
  16. Kim HS, Ward RW (1997) Genetic diversity in Eastern U.S. soft winter wheat ( Triticum aestivum L. em. Thell.) based on RFLPs and coefficients of parentage. Theor Appl Genet 94:472–479 (résumé et extrait)
  17. Donini P, Law JR, Koebner RM, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917
  18. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007 (résumé et extrait)
  19. a et b Goffaux R, Goldringer I, Bonneuil C, Montalent P & Bonnin I (2014) Quels indicateurs pour suivre la diversité génétique des plantes cultivées ? ; le cas du blé tendre cultivé en France depuis un siècle, PDF, 48 pages ; présentation, et résumé et annexes en ligne, voir aussi l'article validant la « méthodologique » (dans Ecological Indicators) en 2012, et un article (2014) sur l'«  exploitation des données », publié par la Revue Agriculture, Ecosystems & Environment
  20. Terme utilisé au Québec pour le maïs.
  21. Définitions historiques du blé dans les dictionnaires anciens, Université de Chicago.
  22. prix du blé
  23. http://www.ngoma.cd/index.php/Le_bl%C3%A9
  24. http://www2.cnrs.fr/presse/communique/2351.htm
  25. Silvan Rieben et al. 2011, "Gene Flow in Genetically Modified Wheat", PLoS ONE 6(12): e29730. DOI:10.1371/journal.pone.0029730
  26. Le blé, le spaghetti et la protéine - Philippe Rousselot.
  27. http://agriculture-de-conservation.com/Exportation-de-paille-de-cereale.html?id_mot=18
  28. http://www.arvalis-infos.fr/view.jspz;jsessionid=DE4D51769B2B9F04B683AC8FBF2AFD03.tomcat1?obj=arvarticle&id=10741&syndtype=null&hasCookie=false&hasRedirected=true
  29. Le réchauffement menace le blé indien. Dans Science & Vie, no 1135, avril 2012, p. 32.
  30. Tereos, producteur de bioéthanol. N.B. : l'usine de bioéthanol de Lillebonne doit être reconvertie en glucoserie.
  31. Chaudières à céréales.
  32. a et b CIC : Conseil International des Céréales.
  33. a et b Source FranceAgriMer - Marché des Céréales - Avril 2010, reprenant les statistiques du CIC.
  34. Cotations historiques sur le site FranceAgriMer
  35. quel-rendement-en-2009-pour-les-bles-bio,609.html Quel rendement en 2009 pour les blés bio ?, Agriculture & Environnement 26 janvier 2010.
  36. Document FranceAgriMer sur les variétés utilisées en France en 2010
  37. Variétés de blé 2011 - France Agrimer
  38. Article sur le sujet du rendement du blé en France
  39. Étude sur le plafonnement du rendement en blé en France
  40. Cependant, les stocks ne dépassent pas, en fin de campagne de commercialisation, plus de 3 mois de consommation.
  41. Article par Hervé Guyomard de l'INRA
  42. Données Blé contact de juillet-août 2012, lettre d'information de l'AGPB, reprenant des données du CIC
  43. Senalia, opérateur de stockage-expédition à Rouen.
  44. Caractéristiques du contrat de futures en blé meunier sur Euronext.
  45. (en) Cotations des contrats blé sur le marché CME/CBOT de Chicago.
  46. Rapport Jouyet.
  47. Ph. Fr. Na. Fabre d'Églantine, Rapport fait à la Convention nationale dans la séance du 3 du second mois de la seconde année de la République Française, p. 28.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Bibliographie[modifier | modifier le code]

  • Garnsey Peter, Grain for Rome, in Garnsey P., Hopkins K., Whittaker C. R. (editors), Trade in the Ancient Economy, Chatto & Windus, London 1983
  • Gate Philippe, Écophysiologie de blé, Lavoisier 1995
  • Jasny Naum, The daily bread of ancient Greeks and Romans, Ex Officina Templi, Brugis 1950
  • Jasny Naum, The Wheats of Classical Antiquity, J. Hopkins Press, Baltimore 1944
  • Heiser Charles B., Seed to civilisation. The story of food, Harvard University Press, Harvard Mass. 1990
  • Harlan Jack R., Crops and man, American Society of Agronomy, Madison 1975
  • Saltini Antonio, I semi della civiltà. Grano, riso e mais nella storia delle società umane, Prefazione di Luigi Bernabò Brea, Avenue Media, Bologna 1996
  • Sauer Jonathan D., Geography of Crop Plants. A Select Roster, CRC Press, Boca Raton

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Sur les autres projets Wikimedia :

Normes internationales