Zinc

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Zinc (homonymie).
Zinc
CuivreZincGallium
   
 
30
Zn
 
               
               
                                   
                                   
                                                               
                                                               
                                                               
                                   
Zn
Cd
Tableau completTableau étendu
Informations générales
Nom, symbole, numéro Zinc, Zn, 30
Série chimique métaux de transition
Groupe, période, bloc 12, 4, d
Masse volumique 7,134 g·cm-3 (25 °C)[1]
Dureté 2,5
Couleur Gris-bleuté
No CAS 7440-66-6 [2]
No EINECS 231-175-3
Propriétés atomiques
Masse atomique 65,409 ± 0,004 u [1]
Rayon atomique (calc) 135 pm (142 pm)
Rayon de covalence 1,22 ± 0,04 Å [3]
Rayon de van der Waals 139 pm
Configuration électronique [Ar] 3d10 4s2
Électrons par niveau d’énergie 2, 8, 18, 2
État(s) d’oxydation 2
Oxyde amphotère
Structure cristalline Hexagonal compact
Propriétés physiques
État ordinaire solide (diamagnétique)
Point de fusion 419,527 °C (congélation)[4]
Point d’ébullition 907 °C [1]
Énergie de fusion 7,322 kJ·mol-1
Énergie de vaporisation 115,3 kJ·mol-1
Volume molaire 9,16×10-6 m3·mol-1
Pression de vapeur 192,2 Pa
à 419,53 °C
Vitesse du son 3 700 m·s-1 à 20 °C
Divers
Électronégativité (Pauling) 1,65
Chaleur massique 390 J·kg-1·K-1
Conductivité électrique 16,6×106 S·m-1
Conductivité thermique 116 W·m-1·K-1
Solubilité sol. dans HCl [5]
Énergies d’ionisation[1]
1re : 9,394199 eV 2e : 17,96439 eV
3e : 39,723 eV 4e : 59,4 eV
5e : 82,6 eV 6e : 108 eV
7e : 134 eV 8e : 174 eV
9e : 203 eV 10e : 238 eV
11e : 274 eV 12e : 310,8 eV
13e : 419,7 eV 14e : 454 eV
15e : 490 eV 16e : 542 eV
17e : 579 eV 18e : 619 eV
19e : 698 eV 20e : 738 eV
21e : 1 856 eV
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
64Zn 48,2 % >4,3×1018 a ε
β+
65Zn {syn.} 244,26 j ε
β+
1,352 65Cu
66Zn 28,0 % stable avec 36 neutrons
67Zn 4,1 % stable avec 37 neutrons
68Zn 19,0 % stable avec 38 neutrons
70Zn 0,6 % >1,3×1016 a 2β-
Précautions
Directive 67/548/EEC[6]
Facilement inflammable
F
Dangereux pour l’environnement
N



Transport[6]
X423
   1436   

423
   1436   
SGH[7]
SGH02 : InflammableSGH09 : Danger pour le milieu aquatique
Danger
H250, H260, H410,
Unités du SI & CNTP, sauf indication contraire.

Le zinc (prononciation /zɛ̃g/, au Canada /zɛ̃k/, en Suisse /zɛ̃/) est un élément chimique, de symbole Zn et de numéro atomique 30. Il est par certains aspects semblable au magnésium dans la mesure où son état d'oxydation courant est +2, donnant un cation de taille comparable à celle de Mg2+. C'est le 24e élément le plus abondant dans l'écorce terrestre. Il possède cinq isotopes stables.

Son principal minerai est la sphalérite, un sulfure de zinc. Les réserves mondiales estimées de zinc étaient de 250 millions de tonnes en 2010[8], détenues notamment par l'Australie (21,2 %) et la Chine (16,8 %). La production mondiale s'est élevée en 2010 à 12 millions de tonnes, assurée essentiellement par la Chine (29,2 %), le Pérou (12,7 %) et l'Australie (12,1 %).

Origine de la découverte du zinc[modifier | modifier le code]

Les Anciens qui connaissaient la calamine (minerai carbonaté de zinc) ne paraissent pas avoir utilisé le zinc en tant que métal isolé, encore que des bracelets de zinc aient été découverts en Grèce, dans les mines de Camaros, ce qui a permis de situer leur fabrication vers le Ve siècle av. J.-C.[réf. nécessaire].

Lexicologie[modifier | modifier le code]

Le mot persan zangâr : rouille ; vert-de-gris [Azagar, asugar, asingar, zingar, ziniar (vert-gris) ; de ar. al-zanjâ, qui est le persan zangâr, même signification]. C'est l'alchimiste Paracelse qui lui donne ce nom, dérivé du mot "Zinke" en allemand qui signifie « pointe acérée » ou « dent », lié à l'apparence du zinc refroidi dans un récipient de coulée (effet dû à la formation de dendrites).

La prononciation académique zɛ̃ɡ (« zingu' ») se retrouve dans zincate ( zɛ̃ɡat, « zingat' ») et explique les dérivés zingage, zinguerie, zingueur.

Caractéristiques notables[modifier | modifier le code]

Zinc, métal pur à 99,995 %

Le zinc est un métal de couleur bleu-gris, moyennement réactif, qui se combine avec l'oxygène et d'autres non-métaux, et qui réagit avec des acides dilués en dégageant de l'hydrogène.

L'état d'oxydation le plus commun du zinc est +II (appelé ion zincique).

Le zinc peut réagir avec les éléments ambiants : humidité, oxygène, dioxyde de carbone, etc, pour former une patine. Cette patine se traduit par une diminution progressive de l'éclat métallique de la surface. La couche formée, insoluble, adhérente et protectrice, a comme constituant principal du carbonate basique de zinc.

En contact avec de l'eau stagnante, il forme des taches blanchâtres constituées notamment d'hydroxyde et d'oxyde de zinc, produits pulvérulents généralement peu adhérents et non protecteurs, parfois appelés rouille blanche.

Le zinc est une ressource non renouvelable.

Isotopes[modifier | modifier le code]

Article détaillé : Isotopes du zinc.

Le zinc possède 30 isotopes connus, de nombre de masse variant de 54 à 83, ainsi que dix isomères nucléaires. Parmi ces isotopes, cinq sont stables[9], 64Zn, 66Zn, 67Zn, 68Zn et 70Zn, et constituent l'ensemble du zinc, le plus abondant étant 64Zn (48,6% d'abondance naturelle). Sa masse atomique standard est de 65,409(4) u.

Vingt-cinq radioisotopes ont été caractérisés, le plus abondant et le plus stable étant 65Zn avec une demi-vie de 244,26 jours, suivis du 72Zn avec une demi-vie de 46,5 heures. Tous les autres radioisotopes ont une demi-vie de moins de 14 heures, la majorité d'entre-eux inférieure à une seconde.

Réactions chimiques courantes[modifier | modifier le code]

Le zinc métal Zn réagit par oxydo-réduction avec l'ion cuivre II, selon l'équation :

\mathrm{Zn+ Cu^{2+}\to Zn^{2+}+Cu}

Oligo-élément indispensable à faible dose (dont pour l'Homme)[modifier | modifier le code]

Article détaillé : Zinc (nutriment).

Le zinc est contenu essentiellement dans la viande rouge et il ne semble pas exister de forme de stockage de ce métal dans l'organisme humain. Une carence patente en zinc est notée dans près d'un tiers de la population mondiale, essentiellement liée à la sous-nutrition[10].
Des données récentes montrent qu'il peut aussi y avoir des carences dans les populations de pays riches[11] lié une alimentation mal équilibrée, chez l'enfant et la personne âgée[12]. Un déficit, même léger, a un impact sur certaines fonctions, dont immunitaires[13] responsable de la défense vis-à-vis de certaines infections. Il peut induire une sensibilité accrue à certaines infections bactériennes (pneumonie) ou virales (diarrhées, infections des voies respiratoires). Le zinc est important pour la santé reproductive (spermatogenèse) l'un des bons traitements de certaines formes d'acné[14].

Polluant (au delà d'une certaine dose)[modifier | modifier le code]

Le zinc est l'un des éléments traces métalliques qui devient un contaminant et un polluant au delà des doses qui le rendent écotoxiques (qui varient selon les espèces, et le contexte ; par exemple il est plus mobile et biodisponible en milieu acide qu'en milieu basique). On l'a d'abord constaté dans et autour des raffineries de zinc où seules quelques espèces résistent bien aux sols contaminés par ce métal. Le zinc du sol (ou apporté par l'eau, l'air ou des boues d'épuration)[15],[16] peut à certaines doses s'avérer écotoxique pour des plantes cultivées PM(soja par exemple[17]).

Des inquiétudes ont récemment émergé quant aux effet de nanoparticules d'oxyde de zinc sur les cultures. Elles se sont montrées (chez le soja) expérimentalement exposé - sous serre - à des nanoparticules de zinc) non toxiques pour la plante (à la différence du dioxyde de cérium), mais capables de s'y bioaccumuler dans les parties comestibles (feuilles et graine)[18].

Le zinc est détecté et quantifié dans le sol, par des moyens de plus en plus précis[19],[20].

Utilisations[modifier | modifier le code]

Le dépôt d'une mince couche de zinc en surface de l'acier le protège de la corrosion : la galvanisation consomme 47 % du zinc exploité dans le monde. L'acier galvanisé est utilisé dans l'automobile, la construction, l'électroménager, les équipements industriels, etc. Le laiton – alliage de cuivre et de zinc – et le bronze – alliage de cuivre et d'étain, auquel on ajoute parfois du zinc – consomment 22 % du zinc.

Des pièces de monnaie sont en zinc ; ce sont surtout des pièces frappées pendant la seconde guerre mondiale et des monnaies de nécessité.

Les alliages de zinc, tel les Zamaks et les Kayems, pour pièces moulées (automobile, équipements ménagers, pièces industrielles...) représentent 19 % de sa consommation, les produits chimiques, 9 %, et les autres applications (dont les plaques et pièces pour toiture), 12 %.

On l'emploie dans les villes pour la couverture des immeubles et, partout, pour les gouttières et les descentes d'eaux pluviales. Il est aussi utilisé en agriculture, comme apport d'oligo-élément, essentiellement en zone de sols fortement calcaires.

La culture la plus sensible à la carence ou insuffisance en zinc est probablement le maïs.

Des symptômes d'insuffisance apparaissent aussi sur la plupart des arbres fruitiers, plus rarement sur la vigne. Les légumes sont moins sensibles, hormis les asperges, les aubergines, les oignons et les pommes de terre.

Les apports, préventifs ou curatifs, se font sur le sol – et il faut alors veiller à la durée de la disponibilité pour les plantes – ou par pulvérisation foliaire.

Pour exemple, les besoins annuels pour le maïs se situent autour de 300 à 500 grammes de zinc par hectare.

En thérapeutique, le zinc peut être utilisé pour le traitement des dermatoses (acné). Il possède également des propriétés cicatrisantes et anti-inflammatoires.

Minerais de zinc[modifier | modifier le code]

Le minerai qui est le plus utilisé est le sulfure de zinc appelé blende ou sphalérite (ZnS). Le mot blende, désormais abandonné dans la littérature minéralogique, provient du mot allemand blenden : « aveugler, éblouir, tromper ». Ce sulfure — le plus répandu dans la lithosphère — cristallise dans le système cubique. Il peut contenir des impuretés métalliques, telles que celles du fer (blendes foncées) : la marmatite, (Zn, Fe)S, contient jusqu’à 14 % de fer. Dans la nature, la sphalérite est associée à d’autres sulfures, comme la galène (sulfure de plomb : PbS).

La wurtzite a la même composition chimique mais cristallise dans le système hexagonal : c'est le polymorphe de haute température de ZnS.

Sous l’ancien vocable de calamine on trouve la smithsonite (carbonate de zinc : ZnCO3) et l'hémimorphite (silicate de zinc : Zn4Si2O7(OH) 2, H2O). Les deux minéraux peuvent être associés. Si historiquement la calamine fut utilisée au début du développement industriel de ce métal, elle est maintenant peu exploitée.

Autres minéraux plus rares :

Environ 30 % du zinc mondial provient du recyclage[21].

Toiture en zinc à Toruń, Pologne

Production de zinc[modifier | modifier le code]

Les principaux gisements de minerais de zinc se situent en Chine et en Australie. La production de zinc à partir de minerai (blende) est effectuée dans deux filières technologiques distinctes :

  • la pyrométallurgie ;
  • l’hydrométallurgie suivie d’une électrolyse.

Les opérations du procédé pyrométallurgique sont :

  • grillage du sulfure de zinc (ZnS) pour obtenir un oxyde de zinc (ZnO) ;
  • réduction de l’oxyde pour obtenir du zinc métallique (Zn) ;
  • affinage du zinc par liquation et distillation pour supprimer les impuretés comme le plomb ou le fer.

Les opérations du procédé hydrométallurgique sont :

  • grillage du sulfure de zinc (ZnS) pour obtenir un oxyde de zinc (ZnO) et supprimer certaines impuretés (fer) ;
  • lixiviation pour solubiliser le zinc sous forme de sulfate de zinc (ZnSO4) ;
  • cémentation pour éliminer les impuretés : Cobalt, Nickel, Cadmium et Cuivre de la solution de sulfate de zinc ;
  • électrolyse pour transformer le sulfate de zinc en zinc métal.

Ces deux procédés sont détaillés dans l’article métallurgie extractive du zinc.

Quelques données économiques[modifier | modifier le code]

La consommation mondiale de zinc en 2004 a été de l'ordre de 10 millions de tonnes[22] :

Évolution de la production de zinc depuis 1970
  • Asie 5 057 kt (kt = milliers de tonnes)
  • Europe 2 840 kt
  • Amériques 2 113 kt
  • Océanie 263 kt
  • Afrique 193 kt
Total 10 466 kt

La production de métal en 2004 s'est répartie de la façon suivante :

  • Asie 4 729 kt
  • Europe 2 715 kt
  • Amériques 1 993 kt
  • Océanie 474 kt
  • Afrique 256 kt
Total 10 167 kt

La production minière (en kt de zinc contenu dans le concentré) a été en 2004 de :

  • Asie 3 340 kt
  • Europe 1 037 kt
  • Amériques 3 606 kt
  • Océanie 1 298 kt
  • Afrique 353 kt
Total 9 634 kt

Le zinc est un des métaux non ferreux cotés à la bourse des métaux de Londres[23]. Son prix au comptant, exprimé en $, est cyclique : entre 1994 et 2005, il a varié entre 725 $/t et 1 760 $/t. En 2006, il a dépassé les 3 000 $/t.

Expressions[modifier | modifier le code]

  • Dans le langage populaire le zinc désigne le comptoir d'un bar.
  • Le zinc est un surnom pour désigner un avion ;
  • Le plombier-zingueur désigne un plombier qui est également zingueur ;
  • « avoir du zinc dans la tête » : être pénible ;
  • Dézinguer : tuer.
  • Aujourd'hui, zinc est parfois synonyme de joint/pétard/spleef
  • Ça zinc ? : Ca va ?
  • Zinc est une abréviation pour dire le cousin
  • Foutre zinc est aussi une variante de Foutre buse

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Références[modifier | modifier le code]

  1. a, b, c et d (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc,‎ 2009, 90e éd., Relié, 2804 p. (ISBN 978-1-420-09084-0)
  2. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  3. (en) Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán et Santiago Alvarez, « Covalent radii revisited », Dalton Transactions,‎ 2008, p. 2832 - 2838 (DOI 10.1039/b801115j)
  4. Procès-verbaux du Comité international des poids et mesures, 78e session, 1989, pp. T1-T21 (et pp. T23-T42, version anglaise).
  5. (en) Thomas R. Dulski, A manual for the chemical analysis of metals, vol. 25, ASTM International,‎ 1996, 251 p. (ISBN 0803120664, lire en ligne), p. 71
  6. a et b Entrée de « Zinc powder (pyrophoric) » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais), accès le 14 février 2010 (JavaScript nécessaire)
  7. Numéro index 030-001-00-1 dans le tableau 3.1 de l'annexe VI du règlement CE N° 1272/2008 (16 décembre 2008)
  8. (en) USGS Minerals – 2011 « Zinc. »
  9. mais deux d'entre eux sont suspectés d'être très légèrement radioactifs, avec des demi-vies supérieures à un million de fois l'âge de l'univers
  10. Lazzerini M, Effect of zinc supplementation on child mortality, Lancet, 2007; 370:1194-1195
  11. Sandstead HH et al. Zinc deficiency in Mexican American children: influence of zinc and other micronutrients on T cells, cytokines, and antiinflammatory plasma proteins Am J Clin Nutr 2008;88:1067–73
  12. Meydani SN et al, Serum zinc and pneumonia in nursing home elderly Am J Clin Nutr 2007;86:1167–73
  13. Dardenne M, Zinc and immune function European Journal of Clinical Nutrition (2002) 56, Suppl 3, S20 – S23. doi:10.1038=sj.ejcn.1601479
  14. Traitement oral de l'acné sévère par le zinc sur acne.comprendrechoisir.com.
  15. Smith SR., A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int. 2009 Jan; 35(1):142-56. Epub 2008 Aug 8.
  16. Heemsbergen DA, McLaughlin MJ, Whatmuff M, Warne MS, Broos K, Bell M, Nash D, Barry G, Pritchard D, Penney N., Bioavailability of zinc and copper in biosolids compared to their soluble salts. Environ Pollut. 2010 May; 158(5):1907-15. Epub 2009 Nov 22.
  17. Borkert CM, Cox FR, & Tucker MR (1998) Zinc and copper toxicity in peanut, soybean, rice, and corn in soil mixtures. (résumé, en anglais). Soil Sci. Plant Anal. 29(19-­‐20):2991-­3005.
  18. Priester JH et al. (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption ; Proc Natl Acad Sci Unit States Am, doi:10.1073/pnas.1205431109 ; Proceedings of the National Academy of Sciences, étude coordonné par John Priester de l'Université de Californie de Santa Barbara (Résumé en anglais et appendice)
  19. Sarret G, Balesdent J, Bouziri L, Garnier JM, Marcus MA, Geoffroy N, Panfili F, Manceau A. (2004), Zn speciation in the organic horizon of a contaminated soil by micro-X-ray fluorescence, micro- and powder-EXAFS spectroscopy, and isotopic dilution. ; Environ Sci Technol. 2004 May 15; 38(10):2792-801.
  20. Donner E, Ryan CG, Howard DL, Zarcinas B, Scheckel KG, McGrath SP, de Jonge MD, Paterson D, Naidu R, Lombi E.(2012) ,A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids; Environ Pollut. 2012 Jul; 166:57-64. Epub 2012 Apr 3. (résumé)
  21. (en) « Le recyclage du zinc », International Zinc Association (consulté en 2008-11-28)
  22. International Lead Zinc Study Group
  23. London Metal Exchange