Méiose

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Vision générale de la méiose. Durant l'interphase, le matériel génétique se duplique et il se produit le phénomène d'enjambement (représenté par des chromosomes rouges et bleus qui se recombinent). Durant la méiose réductionnelle, les chromosomes homologues se répartissent en deux cellules distinctes. Puis durant la méiose équationnelle, comme lors d'une mitose, ce sont les chromatides de chaque chromosome qui se séparent. Il en résulte quatre cellules haploïdes (n).

Il existe deux types de divisions cellulaires chez les eucaryotes : la mitose , qui concerne les cellules somatiques et assure la naissance de cellules identiques à la cellule mère lors de la multiplication asexuée (elle conserve donc l'information génétique) et la méiose qui aboutit à la production de cellules sexuelles ou gamètes pour la reproduction.

Chez les animaux, la méiose est un processus se déroulant durant la gamétogénèse (spermatogenèse ou ovogenèse), c'est-à-dire durant l'élaboration des gamètes (les spermatozoïdes chez le mâle et les ovules chez la femelle) chez les espèces dites diploïdes.

Chez les végétaux, la méiose produit des spores, qui par mitose donneront une génération haploïde (le pollen, le pied feuillé des mousses, etc.) Elle donne des cellules haploïdes (cellules contenant n chromosomes) à partir de cellules diploïdes (cellule contenant 2n chromosomes - chez l'homme, une cellule normale contient 2n = 46 chromosomes (donc 23 paires) alors qu'un gamète contient n = 23 chromosomes au cours de deux divisions). Chez les espèces haploïdes (comme la Sordaria macrospora), la méiose intervient après la fécondation pour diviser la cellule-œuf (a 2n chromosomes). Mais en plus de ce rôle de division, la méiose a un rôle important dans le brassage génétique (mélange des gènes) et ce, grâce à deux mécanismes de brassage : le brassage interchromosomique et le brassage intrachromosomique).

Ainsi, durant la méiose, la quantité d'ADN au sein de la cellule évolue au cours du temps.

Chaque cellule va donc séparer son patrimoine génétique (contenu dans des chromosomes) en deux afin de ne transmettre que la moitié de ses gènes aux cellules filles.

Elle se déroule en plusieurs étapes formant un ensemble de deux divisions cellulaires, successives et inséparables.

La première division méiotique est dite réductionnelle car elle permet de passer de 2n chromosomes doubles à n chromosomes doubles.

La seconde est dite équationnelle car elle conserve le nombre de chromosomes : on passe de n chromosomes doubles à n chromosomes simples.

La méiose permet ainsi la formation de 4 cellules filles haploïdes (ou gamètes)

Schéma[modifier | modifier le code]

Les étapes du cycle cellulaire : La méiose. On représente la cellule par un ovale et le noyau par un cercle vert. On ne montre qu'un type de chromosome. Les rayures bleues-rouges des chromosomes suggèrent le mélange des gènes paternels et maternels obtenus par l'enjambement en Prophase1.

Première division : méiose réductionnelle[modifier | modifier le code]

Le processus d'enjambement. Les chromatides maternelles sont en rouge et les paternelles en bleu. Les pointillés figurent les sutures.

Prophase I[modifier | modifier le code]

La prophase I est divisée en cinq étapes qui correspondent à cinq états caractéristiques de la chromatine : leptotène, zygotène, pachytène, diplotène et diacinèse.

  1. Leptotène : Début de la condensation de la chromatine et attachement des télomères (extrémités des chromosomes) à l'enveloppe nucléaire par la plaque d'attache.
  2. Zygotène : Début de l'appariement des chromosomes homologues (synapsis) par le complexe synaptonémal (ou synapton) et convergence des télomères vers le centromère (un peu comme une fermeture éclair). Le complexe synaptonémal est une structure complexe constituée d'un élément central, SYCP1 qui forme un homodimère, relié à deux éléments latéraux. Les éléments latéraux sont en fait les cohésines SMC1, SMC3 formant un hétérodimère maintenu en place par mREC8 hHR21. Les cohésines se trouvent de part et d'autre par des filaments transverses, à celles-ci se lie la chromatine de chaque zone des chromosomes impliqués dans le phénomène ultérieur d'enjambement (ou crossing-over). Il y a organisation « en bouquet » des chromosomes. L'ensemble des deux chromosomes homologues s'appelle une tétrade (car 4 chromatides) ou un bivalent (car 2 chromosomes).
  3. Pachytène (phase la plus longue ~ 2 semaines pour des spermatozoïdes humains) : Appariement strict des chromosomes homologues et apparition des nodules de recombinaison et de nodules tardifs qui permettent les enjambements (échanges entre chromatides homologues). Cette phase a une importance considérable dans le brassage chromosomique (crossing-over).
  4. Diplotène : Désynapsis (séparation des chromosomes homologues), mais les chromosomes restent attachés en plusieurs points au niveau desquels deux des quatre chromatides semblent s'entrecroiser (chiasma). Pour le bon déroulement de la méiose il en faut au minimum un par chromosome, en moyenne 2-3. Il y a décondensation de la chromatine et formation des grandes boucles permettant un fort taux de transcription. Cette étape de la prophase I peut durer plusieurs années chez l'ovocyte. En effet au cours de ce stade, l'ovocyte I augmente de volume, la décondensation des chromosomes permet la synthèse d'ARN messager et d'ARN ribosomiques qui seront stockés dans le cytoplasme et serviront de réserve pour le futur zygote lors des premières division de segmentation.
  5. Diacinèse : Recondensation de la chromatine et détachement des télomères de l'enveloppe nucléaire. Glissement des chiasmata vers les télomères (terminalisation des chiasmata). À la fin, il y a disparition de l'enveloppe nucléaire.

Métaphase I[modifier | modifier le code]

Les paires de chromosomes homologues (bivalents) se placent de part et d'autre du plan équatorial. Pour chaque bivalent, les centromères se placent de part et d'autre ainsi qu'à égale distance du plan équatorial. Leur orientation se fait de façon aléatoire : on appelle ce phénomène la « ségrégation indépendante ». Cette ségrégation permet un second degré de diversification des cellules-filles : le brassage interchromosomique.

Anaphase I[modifier | modifier le code]

Chaque chromosome s'éloigne de son homologue et migre au pôle opposé, tiré par des microtubules kinétochoriens (microtubules accrochés à un kinétochore au niveau d'un centromère) dû à la dépolymérisation de tubuline. Il n'y a pas clivage des centromères, ceci est dû au fait que la séparase dégrade hREC8 (et donc la construction des cohésines) mais au centromère est inefficace étant donné que Sga1 y protège hREC8.

Télophase I[modifier | modifier le code]

Les enveloppes nucléaires réapparaissent dans chaque cellule, il y a donc formation de deux cellules haploïdes à n chromosomes à deux chromatides (chromosomes bichromatidiens)(n chromosomes, 2n ADN). La cellule se divise en deux, grâce à un anneau contractile fait d'actine.

Deuxième division de méiose appelée méiose équationnelle[modifier | modifier le code]

La méiose équationnelle consiste en une simple mitose, à la différence près du nombre de chromosomes qui est de n.

  • Prophase II : Phase identique à la prophase I mais brève car les chromosomes sont restés compactés.
  • Métaphase II : Les chromosomes se placent sur la plaque équatoriale.
  • Anaphase II : Les chromatides de chaque chromosome se séparent et migrent vers des pôles opposés de la cellule.
  • Télophase II (fin) : Les 4 cellules haploïdes issues de la méiose possèdent n chromosomes simples.

La diversité des gamètes[modifier | modifier le code]

Les gamètes créés par la méiose sont différents bien qu'ils descendent de la même cellule. Cette différenciation joue un rôle clef dans l'évolution des espèces. Ci-dessous, les deux principaux mécanismes de différenciation :


Brassage allélique par ségrégation indépendante des chromosomes homologues (brassage inter-chromosomique)[modifier | modifier le code]

(cas des espèces à caryotype 2n)

Un premier facteur de diversité facile à comprendre provient de l'attribution aléatoire des allèles, c'est-à-dire de chacun des deux chromosomes d’une même paire (chromosomes homologues) vers les cellules filles haploïdes. Au moment de la métaphase I de la méiose, les chromosomes se disposent aléatoirement de part et d’autre du plan équatorial. Chaque chromosome (allèle) d'une paire migre ensuite vers un pôle (anaphase I), sans influencer les sens de migration des allèles des autres paires. Chaque cellule fille possèdera donc un jeu de chromosomes (et donc de gènes) différent de celui de la cellule mère. Cette différenciation est appelée brassage inter-chromosomique.

Échange d'allèles au sein d’une paire de chromosomes (brassage intra-chromosomique)[modifier | modifier le code]

À chaque méiose, sauf cas exceptionnels (drosophile mâle par exemple), il peut se produire un échange réciproque de fragments de chromatides appartenant à deux chromosomes homologues : c’est le phénomène d’enjambement, également appelé crossing over, qui survient pendant la prophase I (donc avant la séparation métaphasique des chromosomes homologues). Cet enjambement est provoqué par un nodule de recombinaison (complexe multi-enzymatique). Les chromatides recombinées se distinguent des chromatides d'origine ; on parle alors de brassage intra-chromosomique.

La diversité est amplifiée par la superposition des deux brassages alléliques[modifier | modifier le code]

La superposition des deux brassages permet une diversité considérable des gamètes.

  • Si l'individu possède h gènes hétérozygotes, le seul brassage intrachromosomique permet 2^h arrangements possibles.
  • S'il possède n paires de chromosomes, le seul brassage interchromosomique permet 2^n arrangements possibles.

Anomalie de la méiose[modifier | modifier le code]

Mitose et méiose[modifier | modifier le code]

la méiose et la mitose sont différentes en plusieurs points mais elles ont aussi de grandes similitudes. La mitose se produit au cours de la multiplication asexuée alors que la méiose a sa place dans la reproduction. Presque toutes les cellules peuvent subir une mitose alors que la méiose ne concerne que celles des organes de reproduction chez les espèces diploïdes (les ovogonies et les spermatogonies) ou la cellule-œuf chez les espèces haploïdes. À la fin de la mitose, il y a deux cellules génétiquement identiques alors qu'à la fin de la méiose il y a quatre cellules qui ne sont pas nécessairement génétiquement identiques.

Liens externes[modifier | modifier le code]