Virus

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Virus (homonymie).

Virus

Description de cette image, également commentée ci-après

Rotavirus

Classification
Type Virus

Règne

Virus 
— auteur incomplet —, date à préciser

Groupes de rang inférieur

Un virus est une entité biologique nécessitant un hôte, souvent une cellule, dont il utilise le métabolisme et ses constituants pour se répliquer. On le considère de plus en plus comme faisant partie des acaryotes[1].

Les virus existent sous une forme extra-cellulaire (unité matérielle indépendante appelée alors virion) ou intra-cellulaire (virus intégré sous forme dormante ou détournant activement la machinerie cellulaire au profit de sa réplication). Sous la forme intracellulaire (à l'intérieur de la cellule hôte), les virus sont des éléments génétiques qui peuvent se répliquer de façon indépendante par rapport au chromosome, mais non indépendamment de la cellule hôte. Sous la forme extracellulaire, les virus sont des objets particulaires, infectieux, constitués au minimum d'un acide nucléique englobé dans une capside de protéines. Une enveloppe est souvent présente chez plusieurs virus.

Le débat sur la nature des virus (vivants ou pas) repose sur des notions complexes[2],[3] et reste aujourd'hui ouvert. Cependant, selon certaines définitions courantes[4] du vivant (entité matérielle réalisant les fonctions de relation, nutrition, reproduction), les virus ne seraient pas des êtres vivants.

La virologie est la science qui étudie les virus. Elle est étudiée par des virologues ou virologistes. Le mot virus est issu du latin virus, qui signifie « poison ». Se terminant par un s, il ne prend pas de marque particulière au pluriel en français[5].

Découverte[modifier | modifier le code]

Les maladies virales comme la rage, la fièvre jaune ou la variole affectent les humains depuis des siècles. Des hiéroglyphes mettent en évidence la poliomyélite dans l'Égypte antique ; des écrits de l’Antiquité gréco-romaine et d’Extrême-Orient décrivent certaines maladies virales.

À la fin du XIXe siècle, la conception d’agents infectieux qui ne fussent ni des bactéries, ni des champignons, ni des parasites, et qu'on ne pût déceler au microscope optique, était encore difficile.

À cette époque, les scientifiques isolaient des agents infectieux à travers des filtres de porcelaine utilisés pour recueillir les bactéries. Entre 1887 et 1892, le botaniste russe Dimitri Ivanovski étudia une maladie végétale, la mosaïque du tabac, et montra que la sève des plantes malades contenait un agent infectieux qui n’était pas retenu par les filtres Chamberland conçus par le biologiste du même nom. Ivanovski pensait qu’il s’agissait d’une toxine ou bien d’une très petite bactérie. C’est le chimiste hollandais Martinus Beijerinck qui approfondit ces travaux et, en 1898, écarta non seulement l’hypothèse bactérienne mais aussi l'hypothèse toxinique : diluant la sève de plantes infectées il l'inocula à des plantes qui développèrent la maladie ; réitérant la manipulation il put transmettre la maladie de multiples fois et démontrer que la sève de la dernière plante infectée était aussi virulente que la première, effet qu'une toxine, après tant de dilutions n'aurait pu produire[6]. Beijerinck appela l'agent Contagium vivum fluidum (« germe vivant soluble »). À la même époque, le virus de la fièvre aphteuse est le premier virus identifié par Friedrich Löffler et Paul Frosch. Le virus de la fièvre jaune est le premier virus pathogène de l’Homme identifié entre 1900 et 1902. Pasteur les nomma « infrabactéries », d'autres les qualifièrent de « virus filtrants » ou « virus ultrafiltrants ».

C’est pendant la Première Guerre mondiale que l’anglais Frederick Twort et le microbiologiste franco-canadien Félix d'Hérelle mettent en évidence le phénomène de « lyse transmissible » observable par la lyse des bactéries cultivées en milieu solide. Ce phénomène est dû à un virus de bactéries que Félix d'Hérelle baptisa bactériophage. Les virus des plantes, des animaux, de l’Homme et des bactéries étaient ainsi découverts et leurs listes ne cessèrent de s’allonger au cours du XXe siècle.

Vers 1925, un virus[7] était défini comme un « agent responsable d'une maladie infectieuse, parasite, de nature particulaire et de taille comprise entre 0,01 et 0,3 micron[8]. »

L’apparition de la microscopie électronique dans les années 1930 permit l’observation des virus, mais on ne savait toujours pas à cette époque ce qu’ils étaient réellement. Le biochimiste américain Wendell Stanley cristallisa le virus de la mosaïque du tabac sous forme de cristal protéique en 1935. L'année suivante, des études complémentaires montrèrent que ce cristal contenait également de l’ARN. Les études ultérieures montrèrent que selon les virus étudiés, ceux-ci étaient composés soit de protéines et d’ARN, soit de protéines et d’ADN. C’est en 1957 qu'André Lwoff proposa une définition[9] claire et moderne des virus.

À partir des années 1960, le développement des cultures cellulaires, de la microscopie électronique, puis de la biologie moléculaire, permirent aux scientifiques de progresser dans la compréhension des mécanismes de réplication des virus, dans la réalisation de diagnostics fiables et dans l’élaboration de vaccins.

Caractéristiques[modifier | modifier le code]

Structure de base d'un virus.

Un virus se caractérise par son incapacité à se multiplier par division. Il a besoin pour cela d'infecter une cellule hôte pour utiliser sa machinerie : un virus est un parasite intracellulaire obligatoire. Il est composé d'une ou plusieurs molécules d'acide nucléique (soit d'ADN, soit d'ARN, simple ou double brin), entourées d'une coque de protéines appelée capside, parfois d'une enveloppe. Il ne possède en général aucune enzyme pouvant produire de l'énergie.

Les virus étaient historiquement considérés comme des particules organiques de petite taille (inférieure à celle d'une bactérie), en règle générale moins de 250 nanomètres. Toutefois de nouveaux virus récemment découverts[10], appartenant à la classe des « virus géants » ou « girus » et au groupe des NCLDV, comme mimivirus avec sa taille de 400 nm et la possession à la fois d'ADN et d'ARN, remettent en cause cette vision historique. De nouveaux virus encore plus grands ont été découverts en 2013, les pandoravirus, avec une taille allant jusqu'à 1 000 nm.

Nature[modifier | modifier le code]

Il y a débat sur la nature des virus.

Les virus possèdent des constituants en commun avec les cellules vivantes, comme un acide nucléique (ADN ou ARN) et des protéines. Cependant, selon la définition du biochimiste Wendell Stanley, les virus sont de « simples » associations de molécules biologiques. Ils sont le fruit d’une auto-organisation de molécules organiques et ne sont donc pas vivants. François Jacob insiste aussi sur cette caractéristique des virus : « placés en suspension dans un milieu de culture, ils ne peuvent ni métaboliser, ni produire ou utiliser de l’énergie, ni croître, ni se multiplier, toutes fonctions communes aux êtres vivants[11] ». Les virus ne peuvent se multiplier qu’en utilisant l’équipement enzymatique d’une cellule vivante. De plus, les virus contiennent bien un acide nucléique, de l’ADN ou de l’ARN, mais pas les deux (sauf le mimivirus, évoqué plus haut), à la différence des cellules vivantes.

Au cours des dernières années, des entités intermédiaires ont été découvertes : le mimivirus, infectant une amibe, possède dans son génome 1 200 gènes (davantage que certaines bactéries). Certains de ces gènes participeraient à la synthèse protéique et à des mécanismes de réparation de l’ADN[12]. Il existe chez le mimivirus une trentaine de gènes présents habituellement chez les organismes cellulaires mais absents chez les virus. Le virus ATV d’archées présente lui aussi des caractéristiques étonnantes : ce virus en forme de citron présente la particularité de se modifier en dehors du contexte cellulaire par un mécanisme actif. Il est capable de s’allonger à chaque extrémité à une température de 80 °C, température à laquelle vit son hôte Acidianus à proximité des sources hydrothermales[13]. Néanmoins organes et échanges cycliques, donc métabolisme, restent absents.

Les virus ont aussi un rôle dans l’évolution. Patrick Forterre avance même l’hypothèse que les virus seraient les premiers organismes à ADN[14]. À l’origine de la vie, l’ARN dominait (hypothèse du monde à ARN) et assurait à la fois les fonctions de stockage et transmission de l’information génétique et de catalyse des réactions chimiques. Seules existaient des cellules dont le génome était codé par de l’ARN et dont le métabolisme était assuré par des ARN-enzymes qui ont progressivement été remplacés par des protéines-enzymes. Ces protéines, déjà complexes, auraient « inventé » l’ADN[15]. L’ADN a été sélectionné en raison de sa plus grande stabilité. D’après Patrick Forterre, l’ADN confèrerait au virus le pouvoir de résister à des enzymes dégradant les génomes à ARN, arme de défense probable des protocellules. On retrouve le même principe chez des virus actuels, qui altèrent leur ADN pour résister à des enzymes produites par des bactéries infectées.

Le débat sur le caractère vivant ou inerte des virus reste encore aujourd’hui ouvert[16]. Répondre à cette question exige de répondre au préalable à une autre : Qu’est-ce que la vie ? D’après Ali Saïb, « la notion du vivant est une notion dynamique, évoluant en fonction de nos connaissances. En conséquence, la frontière entre la matière inerte et le vivant est tout aussi instable »[17]. L'existence ou non d'un métabolisme, c'est-à-dire d'un ensemble cohérent de processus chimiques (l'homéostasie et non la reproduction), constitue un discriminant possible, en tout cas commode.

Structure[modifier | modifier le code]

Une particule virale complète, appelée virion, est composée d’un filament d’acide nucléique, généralement stabilisé par des nucléoprotéines basiques, enfermé dans une coque protéique protectrice appelée capside. La forme de la capside est à la base des différentes morphologies des virus. La taille des virus se situe entre 10 et 400 nanomètres. Les génomes des virus ne comportent que de quelques gènes à 1 200 gènes. Le plus petit virus connu est le virus delta, qui parasite lui-même celui de l'hépatite B. Il ne comporte qu'un seul gène. L'un des plus gros virus connus est le mimivirus, avec un diamètre qui atteint 400 nanomètres et un génome qui comporte 1 200 gènes.

Le virus a une forme microscopique variable : si la représentation « usuelle » lui donne l'image du VIH, les différentes espèces ont des formes allant de la sphère à l'apparence insectoïde.

Acide nucléique[modifier | modifier le code]

Article détaillé : Acide nucléique.

Le filament d'acide nucléique peut être de l'ADN ou de l'ARN. Il représente le génome viral. Il peut être circulaire ou linéaire, bicaténaire (double brin) ou monocaténaire (simple brin). Le génome sous forme d'ADN est généralement bicaténaire. Le génome sous forme d'ARN est généralement monocaténaire et peut être à polarité positive (dans le même sens qu'un ARN messager) ou à polarité négative (complémentaire d'un ARN messager). Le peloton central d'acide nucléique est dénommé nucléoïde.

Capside[modifier | modifier le code]

Article détaillé : Capside.

La capside est une coque qui entoure et protège l'acide nucléique viral. La capside est constituée par l'assemblage de sous-unités protéiques appelées capsomères. L'ensemble de la capside et du génome est nommé nucléocapside. La structure de la capside peut présenter plusieurs formes. On distingue en général deux groupes principaux de virus : les virus à symétrie cubique (ou à capside icosaédrique) et les virus à symétrie hélicoïdale.

Enveloppe[modifier | modifier le code]

De nombreux virus sont entourés d'une enveloppe (ou péplos) qui prend naissance au cours de la traversée des membranes cellulaires. Sa constitution est complexe et présente un mélange d'éléments cellulaires et d'éléments d'origine virale. On y trouve des protéines, des glucides et des lipides. Les virus possédant une enveloppe sont les virus enveloppés. Les virus ne possédant pas d'enveloppe sont les virus nus.

Virus icosaédriques
Virions icosaédriques au microscope électronique.
La capside icosaédrique entraîne une apparence sphérique du virus. Les protomères sont organisés en capsomères, disposés de manière régulière et géométrique. Un capsomère est composé de cinq ou six protomères, appelés pentons aux sommets et hexons au niveau des faces et des arêtes.

Parmi les virus icosaédriques, les parvovirus ont une capside formée de 12 capsomères, les poliovirus 32 capsomères, les papillomavirus 72 capsomères, tandis que la capside des adénovirus est constituée de 252 capsomères.

Virus hélicoïdaux
Schéma d’une capside hélicoïdale.
Ces virus sont de longs cylindres (300 à 400 nm), creux, composés d’un type de protomère enroulé en spirale hélicoïdale formant des anneaux appelés capsomères. Ils peuvent être rigides ou flexibles. Le matériel génétique est logé à l’intérieur du tube. Le virus de la mosaïque du tabac est un exemple de virus hélicoïdal très étudié.
Virus enveloppés
Schéma d’un virus enveloppé : le VIH.
En plus de la capside, certains virus sont capables de s’entourer d’une structure membranaire empruntée à la cellule hôte. Cette enveloppe membranaire est composée d’une bicouche lipidique qui peut posséder des protéines codées par le génome viral ou le génome de l’hôte. Cette enveloppe donne quelques avantages aux virions par rapport à ceux composés d’une capside seule, comme la protection vis-à-vis d’enzymes ou de composés chimiques. Les virus enveloppés sont par contre plus fragiles dans l'environnement extérieur, sensibles aux détergents et à la dessiccation. Les glycoprotéines, formant des spicules, fonctionnent comme des récepteurs permettant de se fixer sur des cellules hôtes spécifiques.

Le virus de la grippe (famille des Orthomyxoviridae), le VIH, virus du SIDA (famille des Retroviridae), sont des exemples de virus enveloppés.

Virus complexes
Schéma d’un bactériophage.
Ces virus possèdent une capside symétrique qui n’est ni hélicoïdale, ni vraiment icosaédrique. Les bactériophages comme le phage T4 d’Escherichia coli sont des virus complexes possédant une tête icosaédrique liée à une queue hélicoïdale à laquelle sont attachés des poils et des fibres caudales.

Le poxvirus (variole, vaccine) est aussi un exemple de virus complexe. C'est le virus animal parmi les plus grands (250 à 350 nm de long sur 200 à 250 nm de large). Certains virus se présentent sous formes bacillaires. C'est le cas du virus de la rage (famille des Rhabdoviridae) et du virus Ébola.

Réplication[modifier | modifier le code]

Multiplication virale[modifier | modifier le code]

Article détaillé : Réplication virale.

Les virus ne peuvent se répliquer qu’au sein de cellules vivantes. C’est l’interaction du génome viral et de la cellule hôte qui aboutit à la production de nouvelles particules virales. L’infection d’une cellule par un virus, puis la multiplication du virus peuvent se résumer en différentes étapes. Toutefois, après pénétration du virus dans la cellule, ces étapes peuvent différer selon la nature du virus en question et notamment selon qu’il s’agit d’un virus à ADN ou d’un virus à ARN.

  1. Adsorption du virus au contact de la membrane de la cellule infectée, grâce à des récepteurs spécifiques
  2. Pénétration dans la cellule
  3. Décapsidation (libération de l'acide nucléique)
  4. Réplication du génome viral
  5. Synthèse de protéines virales
  6. Assemblage et encapsidation des particules virales produites
  7. Libération des virions hors de la cellule-hôte

Culture des virus[modifier | modifier le code]

Culture de virus : technique des plages de lyse.

Afin de mieux connaître leur biologie, leur multiplication, leur cycle et éventuellement afin de préparer des vaccins, il est nécessaire de cultiver les virus. Ceux-ci peuvent se multiplier uniquement au sein de cellules vivantes. Les virus infectant les cellules eucaryotes sont cultivées sur des cultures de cellules obtenues à partir de tissus animaux ou végétaux. Les cellules sont cultivées dans un récipient en verre ou en plastique, puis sont infectées par le virus étudié. Les virus animaux peuvent aussi être cultivés sur œufs embryonnés et parfois chez l’animal, lorsque la culture in vitro est impossible. Les virus bactériens peuvent également être cultivés par inoculation d’une culture bactérienne sensible. Les virus de végétaux peuvent aussi être cultivés sur des monocouches de tissus végétaux, des suspensions cellulaires ou sur des plantes entières.

Les virus peuvent ensuite être quantifiés de différentes manières. Ils peuvent être comptés directement grâce à la microscopie électronique. Dans le cas des virus bactériens, la technique des plaques (ou plages) est très utilisée pour évaluer le nombre de virus dans une suspension. Une dilution de suspension virale est ajoutée à une suspension bactérienne, puis l’ensemble est réparti dans des boîtes de Petri. Après culture, des zones claires (plages) à la surface de la gélose sont la conséquence de la destruction d’une bactérie et des bactéries adjacentes par un virion.

Les virus peuvent être purifiés grâce à diverses méthodes de biochimie (centrifugation différentielle, précipitation, dénaturation, digestion enzymatique).

Origine[modifier | modifier le code]

Tout être vivant peut être infecté par un virus. Il existe des virus de bactéries (les bactériophages), des virus d'archées, des virus d'algues (Phycodnaviridae), des virus de plantes, des virus fongiques, des virus d'animaux, parmi lesquels on trouve de nombreux agents pathogènes, et même des virus de virus[18].

Il existe plusieurs hypothèses concernant l'origine et l'évolution des virus. Il est probable que tous les virus ne dérivent pas d'un ancêtre commun et les différents virus peuvent avoir des origines différentes.

  • Les virus et les cellules ont pu apparaître dans la soupe primordiale en même temps et évoluer parallèlement. Dans ce scénario, au début de l’apparition de la vie, les plus anciens systèmes génétiques d'auto-réplication (probablement de l'ARN) sont devenus plus complexes et se sont enveloppés dans un sac lipidique pour aboutir au progénote à l'origine des cellules. Une autre forme réplicative aurait pu garder sa simplicité pour former des particules virales.
  • Les virus pourraient avoir pour origine des morceaux d'acides nucléiques qui se sont « échappés » du génome cellulaire pour devenir indépendants. Ce phénomène pourrait avoir eu lieu lors d’erreurs au cours de la réplication du matériel génétique. Les virus pourraient aussi avoir pour origine des plasmides (molécules d’ADN circulaires) ou des transposons (séquences d'ADN capables de se déplacer et de se multiplier dans un génome), voire des viroïdes.
  • Les virus pourraient dériver de cellules ayant subi une simplification. D'après cette hypothèse, les ancêtres des virus auraient été des êtres vivants libres ou des micro-organismes devenus des prédateurs ou des parasites dépendants de leur hôte. Les relations de parasitisme entraînent la perte de nombreux gènes (notamment les gènes pour le métabolisme apportés par l'hôte). Cet organisme aurait coévolué avec la cellule hôte et n'aurait conservé que sa capacité à répliquer son acide nucléique et le mécanisme de transfert de cellule à cellule. Cette hypothèse s'appuie notamment sur l'existence des rickettsies, petites bactéries ayant régressé à un tel point qu'elles ne peuvent survivre que dans une cellule hôte, et rappelant les virus.

Des études en 2013 de divers girus tendent à favoriser l'hypothèse d'une simplification[19]. Cela impliquerait que les virus pourraient être un embranchement phylogénétique au même titre que les autres règnes (eucaryotes, bactéries, archées) du Vivant.

Rôle dans l'évolution[modifier | modifier le code]

Article détaillé : Transfert horizontal de gènes.

Il est possible que les virus soient très anciens, peut-être plus anciens que les bactéries les plus anciennes connues.

Au début des années 2000, dans des amibes du genre Acanthamoeba, des chercheurs ont découvert un virus géant (Megaviridae) : le Mimivirus. Aussi grand et complexe que certaines bactéries, il a modifié la perception des virologistes quant aux limites supérieures de taille (sa longueur totale dépasse 0,7 micromètre) et de nombre de gènes du monde viral (il possède plus de 1 000 gènes)[20].

Dix ans plus tard, des chercheurs français publiaient (2013) la description de deux virus encore plus grands, et dont le génome est environ deux fois plus gros (en nombre de gènes) que les précédents virus géants découverts[21]. Ces deux nouveaux virus géants ont été classés dans une catégorie créée pour eux (Pandoravirus) car ils ne sont pas apparentés aux virus connus et présentent même des caractéristiques inattendues :

  • leur diamètre approche le micron et dépasse le record de Megavirus chilensis[20] ;
  • leur génome a une taille très supérieure à ce qui était connu : environ 2 500 gènes ; à titre de rappel, le génome de virus tels que ceux de la grippe ou de l'immunodéficience humaine ne contiennent qu'une dizaine de gènes[20] ;
  • leur génome ne code qu'une infime part (6 %) des protéines habituellement produites par les autres virus connus ;
  • ils ne disposent pas des gènes nécessaires à la synthèse de la protéine de capside (la « brique de base » des capsides de virus normaux)[20]. L'analyse du protéome de Pandoravirus salinus a confirmé que les protéines qui le constituent sont bien celles que l'on peut prédire à partir de la séquence génomique virale.

Le premier (Pandoravirus salinus (en)) a été trouvé dans des sédiments marins prélevés au large du Chili et le second (Pandoravirus dulcis (en)) dans une mare d’eau douce près de Melbourne (en Australie)[20].

Bien que présentant les caractères essentiels d'un virus (pas de ribosome, pas de division ni de production d'énergie), ils semblent d'un type tout à fait nouveau. Leur génome dépasse en taille celui de certains petits eucaryotes (cellules à noyau) parasites[22].

Les Pandoravirus utilisent donc directement le code génétique de leur hôte. Ces organismes ne sont pourtant ni des eucaryotes, ni des eubactéries ni des archébactéries[20]. Cette découverte remet en question le dogme établi par la virologie dans les années 1950 voulant qu'il n'y ait pas de continuité entre virus et bactéries. La vie cellulaire aurait donc pu émerger à partir de formes de vie pré-cellulaires plus variées que ce qu'on pensait.

D'autre part, les virus jouent un rôle important[réf. souhaitée] de vecteur naturel dans les transferts de gène dits horizontaux (par opposition aux transferts dits verticaux de parent à descendant) entre différents individus et même différentes espèces, permettant un accroissement de diversité génétique, et la dissémination d'innovations génétiques au-delà de la descendance d'individu porteur d'une mutation génétique donnée[23]. On pense que les virus ont joué un rôle clef très tôt dans l'histoire évolutive du Vivant, probablement avant la divergence entre bactéries, archées et eucaryotes, à l'époque du dernier ancêtre commun universel. Ils restent l'un des plus grands réservoirs de diversité génétique inexplorés sur la planète[24].

Virus et maladies[modifier | modifier le code]

Les virus possèdent différents mécanismes leur octroyant diverses possibilités stratégiques d'infection, dont l'incidence provoque éventuellement des maladies. Le virion pénètre une cellule hôte plus ou moins spécifique où il se désagrège, libérant son contenu qui en s'activant prend le pas sur les fonctions cellulaires normales. À ce niveau, les effets cytopathogènes des virus peuvent entraîner divers effets néfastes. Les capacités de synthèse protéique de la cellule infectée peuvent être détournées ou inhibées, tandis que la chromatine est fragmentée par des enzymes virales. Des particules virales s’accumulent dans le cytoplasme avant de s'assembler en virions. La surcharge virale endo-cellulaire provoque enfin la mort de la cellule hôte par lyse, libérant les virions qui vont ensuite disséminer.

Lorsque le virus pénètre dans une cellule non permissive, il ne peut pas se multiplier. Son génome peut cependant subsister sous la forme d’un épisome libre ou intégré au génome cellulaire. Il y a transformation cellulaire virale lorsque le génome du virus entre en interaction avec l’ADN du génome cellulaire. On appelle ces virus des virus oncogènes. Parmi ceux-ci, les rétrovirus, en s’intégrant dans le génome cellulaire, peuvent devenir tumorigènes et éventuellement entraîner des cancers.

La capacité d’un virus d’entraîner une maladie est décrite en termes de pouvoir pathogène tandis que son intensité est exprimée en termes de virulence. La classification des principaux groupes de virus, et leurs correspondances en pathologie, se trouvent dans l'encyclopédie médicale Vulgaris. Cette classification est notamment basée sur le type de molécules d'acide nucléique (ARN ou ADN) dont est constitué le virion[25].

Maladies humaines[modifier | modifier le code]

Le rhume, la grippe, la varicelle, la rougeole, la mononucléose infectieuse sont des exemples de pathologies humaines relativement courantes d'origine virale. On connaît d'autres exemples plus nocifs comme le SIDA, le SRAS, la grippe aviaire, la variole, ou les fièvres hémorragiques causées par le virus Ebola.

Quelques exemples de virus pathogènes pour Homo sapiens :

Prévention et traitements[modifier | modifier le code]

Le virus de la polio.

Étant donné que les virus utilisent la machinerie cellulaire de l’hôte pour se reproduire à l’intérieur même de la cellule, il est difficile de les éliminer sans tuer la cellule hôte. Des médicaments antiviraux permettent cependant de perturber la réplication du virus.

Une autre approche est la vaccination qui permet de résister à l’infection.

Divers médicaments permettent de traiter les symptômes liés à l’infection. Les patients demandent souvent[réf. nécessaire] à leur médecin de leur prescrire des antibiotiques, mais ceux-ci sont sans effet sur les virus. Les antibiotiques interfèrent en effet avec des constituants ou le métabolisme des bactéries et permettent donc de traiter seulement les maladies d’origine bactérienne et non les maladies d’origine virale.

Diverses méthodes de désinfection in vitro permettent d’inactiver les virus (hypochlorite de sodium à 1 %, éthanol à 70 %, glutaraldéhyde à 2 %, formaldéhyde).

Biotechnologie[modifier | modifier le code]

Article détaillé : génie génétique.

Les virus présentant en général un matériel génétique simpliste, ce sont d'excellents outils dans l’étude de la biologie moléculaire et la biologie cellulaire. Ils permettent la manipulation de fonctions cellulaires, ce qui permet d'en approfondir notre compréhension et d'éluder certains mécanismes moléculaires de la génétique comme la réplication de l'ADN, la transcription, les modifications post-transcriptionnelles de l’ARN, la traduction, le transport des protéines et l’immunologie.

Les virus peuvent être utilisés (virothérapie) comme vecteur de gène au sein de cellules cibles. Outil utilisé par exemple pour faire acquérir à une cellule la capacité de produire une protéine d'intérêt ou pour étudier l’effet de l’introduction du nouveau gène dans le génome.

Certains virus sont utilisés en thérapie génique pour soigner diverses maladies génétiques, par exemple pour remplacer un gène défectueux provoquant des troubles fonctionnels ou mécaniques.

Les virus sont également utilisés dans la lutte[26] contre le cancer. Certains virus peuvent être en quelque sorte programmés pour détruire spécifiquement des cellules cancéreuses.

Classification[modifier | modifier le code]

Article détaillé : Classification des virus.

Les virus sont classifiés selon la nature de l'acide nucléique de leur génome (ADN ou ARN), la structure de l'acide nucléique (monocaténaire ou bicaténaire), la forme de l'acide nucléique (linéaire, circulaire, segmenté ou non). Les données morphologiques peuvent également être prises en compte (présence ou absence d'enveloppe, symétrie de la capside). Souvent, le sérogroupage est encore utilisé pour raffiner la définition des différences entre virus très proches.

Virus de procaryotes[modifier | modifier le code]

Il existe deux catégories de virus de procaryotes selon le type d’hôte qu’ils parasitent. La première catégorie regroupe ceux qui infectent les bactéries et sont appelés bactériophages. La deuxième catégorie regroupe ceux qui infectent les archées. Il existe quatre grands groupes morphologiques de virus de procaryotes.

  • Les virus à symétrie binaire. Ce groupe représente près de 96 % des virus de procaryotes et correspond aux familles des Myoviridae, des Siphoviridae et des Podoviridae.
  • Les virus à symétrie cubique avec une capside icosaédrique mais pas de queue comme les Microviridae.
  • Les virus à symétrie hélicoïdale qui ont une forme de filaments comme les Inoviridae comme le phage M13.
  • Les virus pléomorphes, sans capsides véritable mais possédant une enveloppe. Ce groupe rassemble six familles de virus dont cinq regroupent des virus infectant seulement les archées. Certains virus d’archées sont pléomorphes, alors que d’autres ont des formes de bouteilles, de citron, de fuseau[27].

Les bactériophages possèdent un rôle dans les écosystèmes. Par exemple, dans les écosystèmes aquatiques, ils participent au contrôle de l’abondance et de la diversité bactérienne[28].

Virus d'eucaryotes[modifier | modifier le code]

Virus d'animaux[modifier | modifier le code]

Virus des vertébrés[modifier | modifier le code]

En principe spécifiques d'une espèce ou d'un groupe de phylums génétiquement proches, les virus ont tendance à infecter un type cellulaire ou tissulaire principal ou exclusif. Cependant, il existe de nombreux virus, comme la rage, qui sont moins spécifiques à un hôte par comparaison avec d'autres virus comme la maladie de Carré, le virus de l’immunodéficience féline ou la variole. Les virions se propagent principalement par contact direct entre individus, mais peuvent aussi diffuser dans l'air sous forme d'aérosols (éternuements), être charriés par des excrétions diverses (vomis, urines, selles, larmes…), ou encore transportés par d'éventuels arthropodes parasites (moustiques, tiques, puces…).

Virus des insectes[modifier | modifier le code]

Les baculovirus sont des virus d’insectes très étudiés. Ils infectent principalement les lépidoptères. La larve de l’insecte s’infecte en ingérant de la nourriture. À partir du tube digestif, l’infection peut se transmettre aux autres tissus. L'utilisation de virus pathogènes d'invertébrés dans la lutte contre les insectes ravageurs des cultures et des forêts pourrait être l'un des moyens pour limiter ou remplacer les insecticides chimiques.
Les baculovirus sont aussi utilisés en biologie moléculaire pour exprimer un gène étranger (protéine recombinante) dans des cultures de cellules d'insecte.
Par ailleurs, certains virus de végétaux sont transmis par des invertébrés mais ne se multiplient pas chez ces vecteurs.

Virus des plantes[modifier | modifier le code]

Microscopie électronique de particules du virus de la mosaïque du tabac.

La structure des virus des plantes ou phytovirus, est similaire à celle des virus bactériens et animaux. Beaucoup de virus végétaux se présentent sous la forme de minces et longues hélices. La majorité a un génome composé d’ARN. Les virus de végétaux peuvent être disséminés par le vent ou par des vecteurs comme les insectes et les nématodes, parfois par les graines et le pollen. Les virus peuvent aussi contaminer la plante par l’intermédiaire d’une blessure ou d’une greffe. Différents types de symptômes peuvent apparaître sur la plante infectée. Les virus peuvent provoquer des taches ou des flétrissements sur les feuilles et les fleurs. Des tumeurs peuvent survenir sur les tiges ou les feuilles.
Le virus de la mosaïque du tabac (TMV ou tobamovirus) est un exemple très étudié de virus de végétaux.

Virus des mycètes[modifier | modifier le code]

Les virus des champignons sont particuliers car ils se propagent lors de la fusion cellulaire. Il n'y a pas de virions extracellulaires. Chez les levures comme Saccharomyces, les virus sont transmis au moment du brassage cytoplasmique lors de la fusion cellulaire. Les champignons filamenteux comme Penicillium ou le champignon de Paris Agaricus bisporus peuvent également être infectés par des virus, ce qui peut entraîner des problèmes lors de production. Il a été imaginé d'utiliser ces virus dans le cadre d'une lutte biologique contre des champignons pathogènes.

Virus de virus[modifier | modifier le code]

Article détaillé : Virophage.

Découvert en 2008[29], Sputnik[30] est un cas à part capable d'infecter un autre virus (Mamavirus) appartenant à la classe des virus géants[31] (génome de plus de 300 000 pb et taille supérieure à 0,2 μm[32]).

On connaît aussi d'autres virophages comme Mavirus[33] associé à CroV[34] (un virus géant infectant l'hôte eucaryote Cafeteria roenbergensis).

Notes et références[modifier | modifier le code]

  1. Les acaryotes ou virus[PDF], sur la page de Vincent Cimetiere, TD de licence 1re année.
  2. Les virus sont-ils des êtres vivants ? sur le site Futura-Sciences.
  3. Les différences entre virus et êtres vivants, sur le site linternaute.com.
  4. Qu'est-ce qu'un virus ?, sur le site teflex.org.
  5. Le pluriel latin de virus n'est pas connu. Bien que se terminant par « -us », on le considère comme un nom neutre de la 2e déclinaison ; son pluriel serait alors « vira ». La forme « viri » est une faute grammaticale : c'est le pluriel des mots masculins de la 2e déclinaison ; « virii » est un barbarisme. En anglais, la marque du pluriel pour un mot se terminant par « s » est « -es » ; la forme « viruses » se retrouve d'ailleurs le plus souvent dans la littérature médicale et professionnelle.
  6. Page 111 du livre Une histoire des microbes de Patrick Berche, 2007, (ISBN 978-2-7420-0674-8).
  7. La première mention du terme virus apparaît chez Virgile avec le sens de « liquide sanieux et purulent ». François Chast et al., « Virus herpès : 2 000 ans d'histoire », Revue d'Histoire de la Pharmacie, vol. 86, no 318, 1998, p. 218-222.
  8. Christelle Rigal, Contribution à l'étude de la recherche médicale[PDF] : Autour des travaux de Jean Bernard et de ses collaborateurs sur la leucémie aiguë, 1940-1970, Université Paris 7 - Denis Diderot, 2003.
  9. LWOFF J Gen Microbiol. 1957 Oct; 17(2):239-53. 1/ les virus ne contiennent qu’un seul type d’acide nucléique (ADN ou ARN) qui constitue le génome viral. 2/ les virus se reproduisent à partir de leur matériel génétique et par réplication. 3/ les virus sont doués de parasitisme intracellulaire absolu.
  10. Jean-Michel Claverie et Chantal Abergel, « Les virus géants vestiges d'organismes cellulaires ? », Pour la Science, no 415, Mai 2012, p. 30-33.
  11. François Jacob, Qu’est-ce que la vie ? in La Vie, Université de tous les savoirs, Éditions Odile Jacob, 2002.
  12. (en) Raoult D., Audic S., Robert C., Abergel C., Renesto P., Ogata H., La Scola B., Suzan M., Claverie J.-M., The 1.2-megabase genome sequence of Mimivirus, Science, 2004 Nov 19 ; 306(5700) : 1344-50.
  13. (en) M. Haring et al., Independant virus development outside a host, Nature, vol. 436, p. 1101-1102, 2005.
  14. (en) Patrick Forterre, Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes : a hypothesis for the origin of cellular domain, PNAS, vol. 103 (10), p. 3669-3674, 2006.
  15. Patrick Forterre. Dossiers de la Recherche no 19, mai 2005, p. 38.
  16. « Les virus appartiennent-ils à l'arbre du vivant ? », Pour la Science, no 415, mai 2012, p. 27.
  17. Ali Saïb, Les virus, inertes ou vivants ? in Pour la Science, décembre 2006.
  18. Découverte d'un virophage, sur le site techno-science.net.
  19. (en) (2013) Pandoraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes. Science 341 (6143) 281-286.
  20. a, b, c, d, e et f (en) Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM (2011) “Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae”. Proc Natl Acad Sci USA. 108: 17486-91.
  21. CNRS (2013), communiqué intitulé Pandoravirus : découverte d'un chaînon manquant entre le monde viral et le monde cellulaire[PDF].
  22. (en) Nadège Philippe, Matthieu Legendre, Gabriel Doutre, Yohann Couté, Olivier Poirot, Magali Lescot, Defne Arslan, Virginie Seltzer, Lionel Bertaux, Christophe Bruley, Jérome Garin, Jean-Michel Claverie, Chantal Abergel (2013), “Pandoraviruses: Amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes” ; Science. DOI:10.1126/science.1239181 (résumé).
  23. (en) Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H ; Phage as agents of lateral gene transfer, Curr. Opin. Microbiol., volume 6, issue 4, p. 417–424 (Août 2003), PMID : 12941415, DOI:10.1016/S1369-5274(03)00086-9.
  24. (en) Forterre P, Philippe H; "The last universal common ancestor (LUCA), simple or complex?", The Biological Bulletin, volume 196, issue 3, Modèle:P.373–375, 375–7, Juin 1999, PMID : 11536914, DOI:10.2307/1542973, texte intégral.
  25. « Virus », Vulgaris Médical.
  26. virus contre Cancer sur le site de 20 minutes.
  27. (en) Prangishvili, D., P. Forterre et R. A. Garrett. 2006. Viruses of the Archaea: a unifying view. Nat Rev Microbiol 4:837-48.
  28. (en) K. E. Wommack et R. R. Colwell (2000) Virioplankton: Viruses in Aquatic Ecosystems. Microbiol. Mol. Biol. Rev. 64, 69-114.
  29. « Virology: A Virus gets a Virus » (ArchiveWikiwixArchive.isGoogleQue faire ?). Consulté le 2013-03-25 lien archive.
  30. (en) Siyang Sun, « Structural Studies of the Sputnik Virophage », Journal of Virology, Journal of Virology, vol. 84, no 2,‎ janvier 2010, p. 894–897 (PMID 19889775, PMCID 2798384, DOI 10.1128/JVI.01957-09).
  31. Correspondance, Nature Reviews Microbiology, vol. 7, p. 615-625, 2009.
  32. James Van Etten, « Les virus géants », Pour la Science, no 415, Mai 2012, p. 22-28.
  33. (en) Fischer MG, Matthias G. et Curtis A. Suttle (2011) A virophage at the origin of large DNA transposons. Science 332 (6026) p. 231-234.
  34. (en) Matthias G. Fischer, Michael J. Allen, William H. Wilson et Curtis A. Suttle, « Giant virus with a remarkable complement of genes infects marine zooplankton », Proceedings of the National Academy of Sciences, vol. 107, no 45,‎ 2010, p. 19508–19513 (PMID 20974979, PMCID 2984142, DOI 10.1073/pnas.1007615107, Bibcode 2010PNAS..10719508F).

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Bibliographie[modifier | modifier le code]

  • Pierre Ardoin : Virus et diagnostic virologique. Paris, Maloine Éditeur, 1983, 997 p.
  • Thierry Borrel : Les Virus. Diversité et organisation du monde viral. Interactions avec le vivant. Nathan Université, Paris, 1996.
  • Gessain A., Manuguerra J.C. : Les virus émergents. Collection « Que sais-je ? », Presses Universitaires de France, 2006.
  • (en) Madigan, M. T., Martinko, J. M. : Brock Biology of Microorganisms, 11th Ed. Pearson Prentice Hall, Upper Saddle River, NJ, 2005.
  • Perry J., Staley J., Lory S. : Microbiologie. Éditions Dunod, 2004.
  • Prescott, L.M., Harley, J.P. Klein, D.A. : Microbiologie 2e édition. DeBoeck eds, 2003.

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]