Phylogénie

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La phylogénie est l'étude des relations de parentés entre différents êtres vivants en vue de comprendre l'évolution des organismes vivants. On peut étudier la phylogénie d'un groupe d'espèces mais également, à un niveau intraspécifique, la généalogie entre populations ou entre individus.

Phylogénie à trois domaines, prenant en compte les résultats de la cladistique et de la génétique, par Hervé Le Guyader, Guillaume Lecointre et Purificacion Lopez-Garcia.

On représente couramment une phylogénie par un arbre phylogénétique. Le nombre de nœuds entre les branches, qui représente autant d'ancêtres communs, indique le degré de parenté entre les taxons. Plus il y a de nœuds et donc d'ancêtres entre deux espèces, plus leur parenté est éloignée, c'est-à-dire que leur ancêtre commun est ancien.

Dans un arbre (dendrogramme) élaboré par phénétique (phenogramme), la longueur des branches représente la distance génétique entre taxons ; dans un arbre élaboré par cladistique (cladogramme), on place sur les branches les événements évolutifs (états dérivés de caractères homologues) ayant eu lieu dans chaque lignée.

Présentation[modifier | modifier le code]

La systématique, l'étude de la diversité biologique en vue de sa classification, se concentre, à la lumière des découvertes récentes, sur une classification phylogénétique remplaçant à présent la classification classique. La classification classique établit des groupes ou taxons en fonction d'un simple critère de ressemblance globale. Une classification phylogénétique suppose que l'on regroupe les êtres vivants en fonction de leurs liens de parenté. Tout groupe systématique (ou « taxon ») renferme donc des êtres vivants proches entre eux génétiquement (ce qui n'est pas toujours corrélé à une ressemblance phénotypique globale). Les liens de parenté entre deux membres d'un taxon sont toujours plus étroits que les liens de parenté entre un membre quelconque du groupe et un être vivant extérieur au groupe (il arrive que ce membre extérieur soit pourtant très ressemblant en raison du phénomène de convergence évolutive, il s'agit alors d'analogie entre les espèces, ce qui ne permet pas de les classer). Pour reconstituer les liens de parenté entre êtres vivants, la phylogénie procède selon deux techniques : la phénétique et la cladistique. Il est donc vraiment important de saisir la différence entre analogue (caractère qui se ressemble) et homologue (caractère semblable hérité d'un ancêtre commun et dû à une évolution).

Cladistique[modifier | modifier le code]

Article détaillé : cladistique.

La cladistique initiée par Willi Hennig hiérarchise les caractères comparés. Ne sont en fait regroupés dans un même taxon que les êtres vivants qui partagent des caractères homologues : lorsqu'une ressemblance entre deux taxons peut être attribuée à une ascendance commune, on parle d'homologie. Les membres antérieurs de tous les tétrapodes, qu'ils soient bras ou ailes, sont homologues.

Ainsi l'aile de la chauve-souris et de l'oiseau sont-ils homologues en tant que membres antérieurs, et non en tant qu'ailes. L'ancêtre commun de l'oiseau et de la chauve-souris possédait en effet déjà quatre pattes mais ses membres antérieurs n'étaient pas des ailes. Cet ancêtre commun est en effet aussi celui des lézards, des crocodiliens. Le membre antérieur « aile » est apparu plus tard indépendamment dans les deux lignées chiroptères et oiseaux...

Les homologies sont en fait vues comme des innovations évolutives partagées (synapomorphies) : si un même caractère homologue est partagé par deux taxons c'est que les deux taxons l'ont hérité de leur ancêtre commun. Ce caractère homologue est donc apparu dans la lignée menant à cet ancêtre commun. Tout être vivant possédant ce caractère homologue descend donc de cet ancêtre commun. Tout être vivant ne possédant pas ce caractère homologue ne descend pas de cet ancêtre commun et est donc éloigné génétiquement.

La cladistique repose donc sur l'identification (souvent difficile) de l'homologie des caractères. Elle est pertinente au niveau morphologique (et est donc le seul moyen de classer les espèces fossiles dont l'ADN est rarement conservé) comme au niveau moléculaire. Les résultats sont représentés dans un arbre phylogénétique, dénommé cladogramme, dans lequel chaque nœud représente un ancêtre commun et où les synapomorphies sont représentées sur les branches dont la longueur est arbitraire. Chacune de ces branches est appelée un clade. Deux taxons sont d'autant plus apparentés qu'ils partagent un ancêtre commun proche dans l'arbre. Ici aussi, donc, les taxons se retrouvent regroupés en fonction de leurs liens de parenté.

Phénétique[modifier | modifier le code]

La phénétique repose sur le postulat de base que le degré de ressemblance est corrélé au degré de parenté. Elle suppose donc de quantifier la ressemblance entre les êtres vivants à classer.

Cette méthode se révèle peu pertinente lorsqu'on l'applique aux caractères morphologiques en raison des analogies : certaines ressemblances entre êtres vivants ou taxons ne peuvent en effet être attribuées à une ascendance commune. On parle alors d'analogie. Le principe utilisé pour expliquer ce phénomène est la convergence évolutive : deux taxons différents vivant dans des niches écologiques semblables ou sur lesquels la sélection naturelle a eu un impact semblable pourront avoir des caractères analogues. Les ailes des oiseaux et des chauves-souris sont des caractères analogues en tant qu'ailes, car ces deux ailes ne sont pas héritées d'un ancêtre commun ailé. De plus il est très difficile de quantifier numériquement des ressemblances morphologiques.

En revanche, la phénétique devient pertinente dès lors que l'on compare un très grand nombre (au sens statistique) de caractères car le nombre de caractères analogues devient négligeable parmi tous les caractères dont la ressemblance est effectivement due à la parenté. Ainsi cette technique est très puissante lorsqu'on l'applique au niveau moléculaire. Les systématiciens ont donc de plus en plus recours à des méthodes moléculaires pour comparer les taxons et reconstruire les phylogénies. Pour ce faire, ils comparent différents constituants moléculaires du vivant comme l'ADN, l'ARN ou les protéines. En effet, ADN, ARN et protéines sont des molécules polymères. Chaque résidu de la molécule (nucléotide pour l'ADN et l'ARN ou acide aminé pour la protéine) peut être considéré comme un caractère. Il est donc possible de comparer les séquences chez plusieurs êtres vivants et de quantifier leur ressemblance par un simple pourcentage que l'on assimile à la distance génétique entre les deux taxons auxquels appartiennent les deux êtres vivants. Les résultats sont représentés dans un arbre phylogénétique, dendrogramme que l'on pourrait nommer phénogramme, où la longueur des branches dépend de la distance génétique et représente donc le degré de parenté entre les taxons étudiés. Cette technique se fonde sur le calcul d'un indice de similitude globale (ISG) qui est défini après l'analyse de nombreux caractères (morphologiques, anatomiques, moléculaires...). Toute analyse se fait à partir d'une seule espèce (exemple: comparaison de séquences nucléotidiques spécifiques de plusieurs organismes par rapport à un seul) et à partir de cette comparaison, on crée une matrice de distance (tableau au nombre d'entrées égal au nombre d'organismes comparés comprenant notre organisme de référence) puis on recherche les plus petites distances (organismes les plus proches pour le critère étudié) afin de constituer un arbre phylogénétique.

Utilisation conjointe de la phénétique et de la cladistique[modifier | modifier le code]

Pendant longtemps des discussions parfois violentes ont opposé tenants de l'une ou de l'autre technique. Aujourd'hui la phénétique et la cladistique sont souvent utilisées conjointement comme étant deux méthodes indépendantes. Lorsque leurs résultats sont convergents, on obtient des phylogénies très solides.

L'utilisation conjointe de ces deux méthodes a révélé l'existence dans la Classification classique de nombreux groupes non fondés sur les liens de parenté et qui sont donc considérés comme non légitimes et ne doivent plus être utilisés en taxonomie. L'utilisation de la phénétique moléculaire et de la cladistique ainsi que la confrontation des arbres obtenus a été largement permise par les méthodes modernes que sont l'amplification par PCR et le séquençage, alliées à de puissants outils de calcul qui permettent d'automatiser ces méthodes.

Exemple de changements dans l'arbre phylogénétique dus à l'utilisation de ces techniques :

Exemple de l'utilisation du gène 16s pour les études de phylogénie des procaryotes.

Une phylogénie n'est pas une généalogie[modifier | modifier le code]

Le partage entre espèces d'un caractère ou d'un certain nombre de caractères jette sur ces mêmes espèces le soupçon d'une origine commune qui remonte jusqu'à l'existence d'un ancêtre commun, le premier à avoir acquis ce caractère ou ensemble de caractères. L'existence de l'ancêtre peut donc être découverte grâce à la méthode cladistique, mais pas son identité, qui reste cachée. Ainsi par exemple les oiseaux partagent tous un ancêtre commun, mais la découverte en 1861 d'un fossile comme Archaeopteryx, qui est le plus ancien oiseau connu, ne prouve pas que ce fossile en particulier soit l'ancêtre de tous les oiseaux. Effectivement une découverte future pourrait mettre au jour un oiseau fossile plus ancien qu'Archaeopteryx, mais à nouveau la certitude d'être en face d'un « ancêtre » est inexistante. Les rapports d'ancêtre à descendants (la généalogie) ne peuvent être identifiés en tant que tels que si l'identité même de l'ancêtre et des descendants est préalablement connue. Autrement dit, pour retracer la généalogie, la science de la classification devrait avoir la certitude de connaître toutes les espèces existantes et ayant existé. Comme ce n'est pas le cas, car la science est loin de pouvoir connaître la totalité des espèces vivantes et fossiles, la généalogie, même si elle a réellement eu lieu dans le passé, ne peut être retracée. Ce que la science de la classification peut retracer, avec ces mêmes éléments partiels que sont les quelques espèces fossiles et actuelles connues, ce sont les rapports de parenté entre espèces. Telle est la différence entre une généalogie (« qui est ancêtre de qui ») et une phylogénie (« qui est le plus proche parent de qui »). Les rapports phylogénétiques entre espèces connues constituent ainsi le seul critère objectif possible de classification[1].

Notes et références[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]