SARS-CoV

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Le Sars-CoV est le coronavirus à l'origine de l'épidémie de SRAS (Syndrome Respiratoire Aigu Sévère) observée en 2003 à travers le monde. Il aurait émergé en novembre 2002 dans la province de Guangdong en Chine. De cette date au mois d'août 2003, le virus aurait infecté 8 422 personnes dans une trentaine de pays[1] causant 916 décès.

Le Sars-CoV, comme tous les coronavirus, possède un génome ARN simple brin de sens positif. Ce génome fait environ 30 kb et encode les protéines de structure (N, E, M et S), l'ORF1a/1b contenant les différents enzymes du virus et une panoplie de protéines non-structurales. Le génome ne contient pas de gène codant pour l'hémagglutinine estérase, présente chez les coronavirus de classe II. Les protéines de structure du virus sont toutes encodées séparément et leur expression est obtenue à partir de courts ARN messagers spécifiques.

Protéines du virus et structure[modifier | modifier le code]

Le SARS-CoV est composé d'une nucléocapside de forme hélicoïdale formée de son génome ARN interagissant avec des protéines nommées N. Cette nucléocapside est entourée d'une capside et d'une enveloppe, formées par les protéines structurales E, M, S et de lipides provenant du bourgeonnement du virion.

Gène de la réplicase[modifier | modifier le code]

Occupant près des deux tiers du génome, le gène de la réplicase contient deux cadres de lecture ouverts, ORF 1a et 1b, encodant deux polyprotéines nommées pp1a et pp1b. L'expression de pp1b est dépendante d'un décalage -1 du cadre de lecture effectué par le ribosome un peu en amont du codon stop de pp1a. Ces deux polyprotéines sont ensuite clivée par deux protéases virales (3CLpro et PL2pro)[2] pour donner différents produits, dont l'hélicase et la polymérase virales, ainsi qu'une certaine quantité de protéines non-structurales qui auraient, pour plusieurs, un rôle dans la réplication du génome.

Protéines structurales[modifier | modifier le code]

Protéine N[modifier | modifier le code]

La protéine N, pour nucléocapside, est une protéine qui est retrouvée à la fois dans le noyau et le cytoplasme et que l'on a associée à de multiples fonctions chez le SARS-CoV. Tout d'abord, elle s'associe à l'ARN viral lors de l'assemblage du virion et permet, ce faisant, l'empaquetage du génome à l'intérieur de celui-ci. Ces fonctions sont rendues possibles grâce à un domaine de liaison de l'ARN dans la partie N-terminale et un domaine premettant l'association de N en dimères et autres formes d'auto-association[3]. N se lie aussi à différentes protéines hôtes, notamment la cyclophiline A(Cyp A) et la ribonucléoprotéine A1, suggérant un rôle plus important que la simple structure virale. De plus, la protéine de nucléocapside serait impliquée au niveau de la modulation de différentes voies de signalisation cellulaires en régulant l'expression de certain acteurs de ces voies tels ERK, MAPK ou JNK[4]. Ces modifications incluent l'induction de l'apoptose ainsi que la réorganisation du cytosquelette.

Protéine E[modifier | modifier le code]

La protéine E (enveloppe) est, comme son nom l'indique, la composante principale de l'enveloppe virale. Pour ce faire, elle présente une structure hautement hydrophobe et cette caractéristique pourrait lui permettre de modifier la perméabilité de la cellule infectée en formant des pores sur la membrane plasmique. Longue de 76 acides aminés, E est principalement localisée dans le réticulum endoplasmique, l'appareil de Golgi et la membrane dans les cellules de mammifères infectés.

Protéine M[modifier | modifier le code]

La protéine de matrice est semblable à celle retrouvée dans les autres coronavirus, comportant un domaine transmembranaire à trois passages ainsi qu'une longue partie carboxy-terminale qui peut interagir avec la protéine de nucléocapside[5]. La protéine M joue un rôle dans l'assemblage du virus, qu'il soit enveloppé ou non lors du processus. Il s'agit de la protéine la plus abondamment retrouvée à la surface des virions. Conséquemment, des anticorps contre cette protéine sont retrouvés dans le sérum des patients.

Protéine S[modifier | modifier le code]

La protéine S (spicule) est une protéine de fusion virale de classe I[6]. Comme les autres membres de cette classe, celle-ci comporte deux sous-unités (nommées S1 et S2) et s'auto-associe en trimères à la surface du virus. La sous-unité S1 reconnaît, comme récepteur de fusion, l'enzyme de conversion de l'angiotensine-2(ACE-2)[7] mais pourrait reconnaître d'autres récepteurs tels que la lectine de type C CD209L(L-SIGN), ce qui pourrait expliquer son tropisme pour des types cellulaires ACE-2 négatifs[8]. Cette association avec le récepteur cellulaire permet l'insertion du peptide de fusion présent sur S2 et mène à l'entrée du virus dans la cellule via fusion entre la membrane et l'enveloppe virale. Des interactions avec différentes voies de signalisation dans la cellule hôte, notamment l'induction de celles de l'apoptose, de la production de cytokines inflammatoires et de l'expression de la cyclo-oxygénase-2, sont aussi associées à la protéine de S. Elle semble aussi être responsable de la régulation négative de la ACE-2 après l'infection virale[9]. Il s'agit aussi de la principale protéine inductrice d'anticorps in-vivo.

Autres protéines[modifier | modifier le code]

Les autres protéines non structurales, ou nsp (pour Non-Structural Protein) sont des protéines coronavirales non requises pour la réplication in vitro mais leur conservation au niveau de l'espèce laisse deviner un rôle lors de la réplication virale in vivo[10] ainsi que la pathogenèse chez l'humain. Le Sars-CoV possède plusieurs nsp mais peu d'entre elles ont une fonction bien définie.

Pathogenèse et infection[modifier | modifier le code]

L'infection d'un nouvel hôte par le virus se fait premièrement via le système respiratoire, le plus souvent par contact avec des sécrétions ou des aérosols infectés. Des cas sporadiques de contamination aérienne et fécale ont été rapportés[11]. Le tropisme de la protéine S pour ACE-2 permet l'entrée du virus dans les cellules épithéliales bronchiques[12]. Cependant, cette seule infection ne peut expliquer les données pathologiques recueillies lors de l'épidémie de 2003. En effet, des atteintes des tissus lymphoïdes digestifs, des organes lymphoïdes secondaires et des cellules immunitaires du sang(rate, ganglions lymphatiques) ont été repertoriées chez la majorité des patients[13]. L'atteinte immunitaire semble jouer un rôle non négligeable dans la pathogenèse du virus et un des signes les plus précoces de l'infection au SRAS est une lymphopénie,qu'il aurait été possible d'utiliser comme marqueur de diagnostic et de pronostic lors de l'éclosion de 2003, les dégâts subis par le système immunitaire étant à même d'aggraver les symptômes respiratoires[14].

Des atteintes de l'épithélium digestif, du foie et des reins pourraient aussi expliquer la prévalence de symptômes autres que respiratoires (diarrhées, hématurie) chez les personnes atteintes du virus ainsi que la présence de virus dans l'urine et les matières fécales.

La réponse hôte contre le virus implique à la fois les branches innées et acquises de l'immunité. La branche acquise permet la production d'anticorps via les lymphocytes B et la destruction des cellules infectées via les lymphocytes T CD8+. Les anticorps neutralisants l'entrée du virus sont principalement dirigés contre la protéine S[15]. La réponse innée, médiée notamment par les macrophages, le complément et les interférons, serait surtout impliquée dans la phase précoce de l'infection. Plusieurs coronavirus sont capables de moduler cette réponse et le SRAS-CoV ne semble pas faire exception[13].

Détection et diagnostic[modifier | modifier le code]

Les tests diagnostics s'effectuent par détection des différentes composantes virales. Il est possible de détecter l'ARN viral dans un spécimen en ayant recours à la RT-PCR. Les gènes le plus souvent amplifiés par cette méthode sont le gène du complexe réplicase ou celui de la nucléocapside. La détection d'antigènes viraux dans les sécrétions des patients peut se faire par ELISA. L'antigène viral le plus abondant étant la nucléocapside, une combinaison de trois anticorps dirigés contre cette protéine a été utilisée. Finalement, la détection d'anticorps reconnaissant le virus est possible bien que cette méthode présente quelques désavantages : les anticorps apparaissent relativement tard dans la maladie et ils peuvent persister un certain temps dans le sang des patients convalescent, ce qui en fait une méthode moins spécifique et moins rapide que les autres[16].

Traitement[modifier | modifier le code]

Les professionnels de la santé n'ayant jamais rencontré ce virus au moment de l'éclosion, divers traitements ont été utilisés pour tenter d'enrayer l'épidémie de SRAS. Parmi eux, les plus fréquents ont été : la ribavirine, un analogue de nucléotides, des anti-inflammatoires stéroïdiens et, après identification formelle du pathogène et des criblages de sensibilité, l'interféron-alpha et des inhibiteurs de protéases. L'efficacité de ces traitements est cependant discutable, puisqu'aucune étude clinique adéquate n'a été effectuée sur eux. L'analyse des études disponibles a montré qu'une grande proportion d'entre elles reste inconclusive, ayant été réalisées sur de petits nombres de sujets ou bien sans protocole et doses fixes, certaines indiquant même que des traitements pourraient avoir nui à l'éradication du virus[17]. Pour ce qui est des vaccins, l'éradication rapide de l'épidémie n'a pas laissé place à beaucoup d'essais cliniques. Un vaccin inactivé, de même que d'autres basés sur les protéines S et N sont à l'étude depuis plusieurs années[18].

Notes et références[modifier | modifier le code]

  1. Bilan de l'OMS pour la période 1er novembre 2002 au 7 août 2003 (http://www.who.int/csr/sars/country/country2003_08_15.pdf),
  2. Thiel, Volker, et al Mechanisms and enzymes involved in SARS coronavirus genome expression J Gen Virol 2003 84: 2305-2315
  3. Kumar Singh Saikatendu, Jeremiah S. Joseph et al, Ribonucleocapsid Formation of Severe Acute Respiratory Syndrome Coronavirus through Molecular Action of the N-Terminal Domain of N Protein , Journal of Virology, April 2007, p. 3913-3921, Vol. 81, No. 8
  4. URJIT, M., B. LIU, S. JAMEEL, et al. 2004. The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. Biochem. J. 383: 1–6.
  5. FANG, X., L. YE, K.A. TIMANI, et al. 2005. Peptide domain involved in the interaction between membrane protein and nucleocapsid protein of SARS-associated coronavirus. J. Biochem. Mol. Biol. 38: 381–385.
  6. Du L, et al. The spike protein of SARS-CoV — a target for vaccine and therapeutic development, Nat Rev Microbiol. 2009 March ; 7(3): 226–236. doi:10.1038/nrmicro2090.
  7. Li W, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 2003;426:450–454. [PubMed: 14647384]
  8. NAMITA S AND SUNIL K. LAL, The Molecular Biology of SARS Coronavirus, Ann. N.Y. Acad. Sci. 1102: 26–38 (2007). C 2007 New York Academy of Sciences. doi: 10.1196/annals.1408.002
  9. Matthew F and Ralph B, Mechanisms of Severe Acute Respiratory Syndrome Pathogenesis and Innate Immunomodulation, MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Dec. 2008, p. 672–685 Vol. 72, No. 41092-2172/08/$08.000 doi:10.1128/MMBR.00015-08
  10. Herrewegh, A.A., Vennema, H., Horzinek, M.C., Rottier, P.J., de Groot, R.J., 1995. The molecular genetics of feline coronaviruses: comparative sequence analysis of the ORF 7a/7b transcription unit of different biotypes. Virology 212, 622–631.
  11. Wong SS, Yuen KY. The management of coronavirus infections with particular reference to SARS. J Antimicrob Chemother 62: 437–441, 2008.
  12. Chien-Te K. Tseng, et al, Apical Entry and Release of Severe Acute Respiratory Syndrome-Associated Coronavirus in Polarized Calu-3 Lung Epithelial Cells J Virol. 2005 August; 79(15): 9470–9479. doi: 10.1128/JVI.79.15.9470-9479.2005
  13. a et b Jiang Gu and Christine Korteweg, Pathology and Pathogenesis of Severe Acute Respiratory Syndrome, The American Journal of Pathology, Vol. 170, No. 4, April 2007
  14. Gu, J., et al 2005. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 202: 415–424.
  15. cBuchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K, et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A. 2004;101:9804-9
  16. Pravin K. Bhatnagar, et al Molecular Targets for Diagnostics and Therapeutics of Severe Acute Respiratory Syndrome (SARS-CoV) 2009, J Pharm Pharm Sci. ; 11(2): 1s–13s.
  17. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3:e343. doi:10.1371/journal.pmed.0030343
  18. Zhu, M. 2004. SARS immunity and vaccination. Cell. Mol. Immunol. 1:193-198