Liste des lois de probabilité

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Toute fonction f(x), définie, intégrable et non négative sur un domaine A, peut servir de distribution de probabilité d'une variable aléatoire X prenant des valeurs dans le domaine A. Il faut et il suffit qu'elle soit multipliée par un facteur a qui assure que la « probabilité totale » — la somme ou l'intégrale des f(x) sur le domaine — soit égale à 1 (100% de probabilité).

Lorsque la fonction f(x|θ) dépend d'un paramètre, le facteur a(θ) est appelé fonction de partition.
Une définition plus exacte et rigoureuse existe, valable également lorsque le domaine n'est pas simplement dénombrable ou continu.

Il y a donc une infinité de distributions possibles. Cependant, certaines sont plus courantes, plus utiles dans les applications pratiques ou plus importantes dans la théorie. Celles-ci ont en général reçu un nom particulier.

Convention de terminologie et notations
L'intersection du langage scientifique avec la langue vernaculaire a obscurci le sens rigoureux des termes « probabilité », « distribution » ou « loi ». En toute rigueur,
  • Fonction de répartition : FX(x) signifie la probabilité P(X≤x).
  • Fonction de probabilité : fX(k) ou pX(k) signifie la probabilité de masse discrète P(X=k).
  • Fonction de densité fX(x) signifie la dérivée (continue) de la fonction de répartition.
  • Distribution (de probabilité) signifie le modèle auquel répond la variable (discret ou continu ou autre, fonctions de répartition et de densité/probabilité, fonctions génératrices, etc.).
Loi de probabilité est un terme utilisé en France à la place de « distribution ». À ne pas confondre avec l'usage anglais, où « law » signifie un modèle théorique, une affirmation, comme les lois de Kepler ou la loi de la thermodynamique. Par exemple, la loi de Zipf (Zipf's Law) énonce que les fréquences de mots d'un texte suivent la distribution de Zipf (Zipf Distribution).

On donne pour certaines distributions la forme fonctionnelle : il s'agit de la structure de dépendance de f(.) par rapport à la v.a., dépouillée de sa fonction de partition. Pour la formule complète, se référer à l'article correspondant. On a choisi d'utiliser k pour les valeurs d'une v.a. discrète et x pour une v.a. continue.

Distributions discrètes[modifier | modifier le code]

Ces lois sont définies sur un support dénombrable, non continu (en général, des entiers). Le mot « discret » signifie « non continu ».

Domaine fini[modifier | modifier le code]

  • La loi uniforme discrète décrit un tirage aléatoire à n résultats possibles équiprobables : pile ou face, dé, roulette de casino, tirage d'une carte.
  • La loi triangulaire discrète décrit la somme de deux uniformes indépendantes de même paramètre : résultat du jet de deux dés.


  • La loi de Bernoulli décrit un tirage aléatoire à deux résultats possibles (succès et échec, numérotés 1 et 0) : pile ou face (probabilité p=1/2), homme ou femme, produit valable ou défectueux, etc.
    • La loi de Rademacher est une Bernoulli équiprobable (p=1/2) où le succès vaut 1 et l'échec −1.
  • La loi binomiale décrit le résultat (nombre de succès) d'une série de tirages Bernoulli indépendants de probabilité de succès p connue.
    • La loi bêta-binomiale décrit le résultat d'une série de tirages Bernoulli indépendants de probabilité de succès p aléatoire.
    • La loi Poisson binomiale décrit le résultat d'une série de tirages Bernoulli indépendants dont la probabilité de succès p n'est pas constante.
  • La loi hypergéometrique décrit le résultat d'une série de tirages Bernoulli dépendants. Le modèle est celui d'une « urne » dont on tire des « boules » successives noires et blanches sans les remettre dans l'urne.
    • Le modèle de Polya (à ne pas confondre avec la loi de Polya qui n'est autre que la binomiale négative) décrit une urne dans laquelle on remet plus de boules que celles qui sont tirées.
  • Il existe des variantes (« généralisations ») de la loi hypergéométrique qui modifient la probabilité relative de tirage des boules :


  • La loi de Zipf est une distribution puissance, appliquée à la distribution des tailles ou des fréquences en fonction du rang, par exemple dans le calcul des fréquences relatives de mots dans un texte, ou celui des tailles relatives des villes d'un pays.
  • La loi de Benford décrit la fréquence relative des chiffres initiaux d'un ensemble de nombres. Elle est utilisée pour identifier le caractère artificiel de certains ensembles de données (fraudes économiques ou scientifiques).

Domaine infini[modifier | modifier le code]

  • La loi géométrique ( f ~ pk) décrit le nombre d'essais nécessaires, dans une suite de tirages Bernoulli, avant d'obtenir un succès.
  • La loi binomiale négative, ou loi de Pascal, ( f ~ Ckn+k-1pk) généralise la géometrique pour l'obtention de n succès. On l'appelle parfois loi de Polya lorsque n n'est pas entier.


  • La loi de Poisson ( f ~ λk/k!) décrit la probabilité d'observer un certain nombre d'événements aléatoires dans un intervalle continu (durée, longueur). Elle connaît une série de distributions dérivées :
    • la Poisson décalée pour x > m.
    • la hyper-Poisson ( f ~ λak/k!a)
    • la loi de Conway-Maxwell-Poisson, une extension à deux paramètres de la Poisson permettant un taux de survenance ajustable en fonction des événements déjà produits (files d'attente, grossesses).
    • La loi de Skellam, distribution de la différence de deux variables Poisson indépendantes.
    • La loi de Delaporte est la convolution (la somme) d'une Poisson et d'une binomiale négative.


  • La loi logarithmique ( f ~ pk/k) est basée sur le développement en série de la fonction logarithme. Elle a été utilisée dans la description de populations d'espèces.


  • La loi zêta, ou loi de Pareto discrète, ( f ~ 1/ks) basée sur la fonction zeta de Riemann, est la distribution de Zipf étendue à un nombre infini d'éléments. Elle a des applications en mécanique statistique et en théorie des nombres.
  • La loi de Yule-Simon ( f ~ B(k,a+1) ~ (k-1)!/(k+a)! si a entier) apparaît dans des modèles biologiques. Asymptotiquement elle ressemble à la loi de Zipf.


Distributions continues[modifier | modifier le code]

Sur un intervalle borné[modifier | modifier le code]

  • La loi uniforme continue exprime l'équiprobabilité sur tous les points d'un intervalle fini [a,b].
    • La loi rectangulaire est l'uniforme sur le domaine [-1/2 , +1/2].
    • La loi triangulaire continue est la distribution de la somme de deux variables uniformes (convolution de deux distributions uniformes).
    • La loi de Irwin-Hall est la distribution de la somme de n variables uniformes [0,1] indépendantes.
    • La loi de Bates, selon les sources, est la distribution du minimum (en) ou de la moyenne de n variables uniformes [0,1] indépendantes.


  • La loi bêta ( f ~ xa (1-x)b ) est distribuée dans [0,1]. Elle sert par exemple à estimer les valeurs possibles d'une probabilité.
    • La loi bêta peut s'adapter sur un intervalle quelconque [c,d] ( f ~ (x-c)a (d-x)b ).
    • La loi arc sinus ( f ~ arcsin x) est un cas spécial de la Bêta, sur [0,1] ou sur [c,d].
    • La distribution PERT, en ingénierie, et le modèle de Balding–Nichols, en génétique, sont des Bêta avec des paramètres particuliers.
    • La loi de Xenakis est aussi un cas particulier de loi Bêta: Elle est définie par Iannis Xenakis comme la loi de la longueur d'un segment inclus dans un segment donné.
  • La loi Kumaraswamy ( f ~ xa-1 (1-xa)b ) est très proche de la Bêta ; les formules de ses fonctions de densité et de répartition sont plus faciles à utiliser.
  • La loi bêta généralisée ( f ~ xap (1-qx)b / (1+qx)a+b ) a des cas particuliers parmi toutes les catégories décrites ici.
    • La loi sub-bêta ( f ~ p (1-qx)-2 avec p=1-q) est la distribution de la fraction X/(X+Y) quand X et Y sont des Exponentielles indépendantes.
  • La loi alpha ( f ~ xa (1-x)b e-cx ) est distribuée dans [0,1].



  • La loi logit-normale, sur (0,1), est la distribution d'une variable dont la transformée logit Y=ln(X/1-X) est une v.a. normale.
  • La normale peut bien sûr être tronquée sur un domaine fini [c, d].
  • La loi de von Mises (en) ou de Tikhonov ou loi normale circulaire ( f ~ ecos x) établit la distribution d'angles ou de directions sur le cercle [0, 2π]. N.B.: cette loi peut être vue comme une distribution bivariée (x,y) sur le cercle. Voir ci-dessous.

Sur un intervalle semi-fini (le plus souvent [0,∞[ )[modifier | modifier le code]

  • La loi exponentielle (f ~ e-λx) mesure le temps d'attente avant la survenance d'un événement aléatoire dans un processus de Poisson (ou, alternativement, la durée entre deux événements consécutifs). C'est une Gamma de paramètre N=1.
  • La loi Gamma (f ~ xN-1e-λx) ou loi de Pearson Type III mesure le temps d'attente avant la survenance de N événements aléatoires dans un processus de Poisson. Elle généralise l'Exponentielle.
    • La loi d'Erlang est un autre nom de la distribution Gamma lorsque le paramètre N est entier.
    • La loi log-gamma est la distribution d'une variable dont le logarithme suit une distribution Gamma.
    • La loi inverse-gamma est la distribution d'une variable X dont l'inverse 1/X suit une distribution Gamma.
  • La loi gamma généralisée (f ~ xN-1e-λxC) a beaucoup de cas particuliers, selon l'exposant de x dans l'exponentielle.
    • La loi de Nakagami (f ~ xr-1 e-λx²) sert à modéliser la racine carrée d'une Gamma.
    • La loi de Rayleigh (f ~ x e-λx²) sert, entre autres, à distribuer la distance à l'origine r = \sqrt{x^2 + y^2} d'un point (x,y) tiré d'une Normale bivariée centrée en (0,0).
    • La loi de Rice est une généralisation de la loi de Rayleigh : distance d'une v.a. Normale bivariée à un point quelconque du plan.
  • La loi de Wald, ou loi inverse-gaussienne, (f ~ x-3/2e-λ(x-µ)²/x) est la distribution du temps d'attente d'un mouvement brownien.
    • La loi Ex-Wald, est la convolution (somme) d'une Wald et d'une Exponentielle.
  • La loi de Lévy (f ~ (x-µ)-3/2e-λ/(x-µ)²) est distribuée sur [µ,∞[ . (Voir loi stable)
  • La loi du χ² — prononcé « khi-carré » ou, parfois en France, « khi-deux » — (f ~ xn/2 - 1e-x/2) est la distribution de la somme des carrés de n variables aléatoires Normales Standard indépendantes. Elle sert à décrire la distribution d'une variance d'échantillon. Elle a des applications dans les tests d'ajustement de données de comptage. C'est une Gamma de paramètres (1/2, n/2).
    • La loi du χ² non centrée est la distribution de la somme des carrés de n variables aléatoires Normales (µ,1) indépendantes.
    • La loi inverse-χ² est la distribution d'une variable X dont l'inverse 1/X suit une distribution Khi-carré.
    • La loi inverse-χ² recalibrée
    • La loi du χ décrit la distribution de la racine carrée d'une khi-carrée, par exemple un écart-type d'échantillon.
    • La loi du χ non centrée décrit la distribution de la racine carrée d'une khi-carrée non centrée.
  • La loi bêta prime ( β' ), ou loi Bêta II ou loi de Pearson de type VI, (f ~ xa(x+1)b) est la distribution du ratio de deux v.a. exponentielles indépendantes.
    • La loi bêta prime généralisée (f ~ xa(k+xp)b) a pour cas particuliers la β', la Gamma composée, la loi de Dagum, la loi log-logistique, la loi de Burr.
    • La loi gamma composée (f ~ xa(x+k)b) est la distribution d'une v.a. Gamma dont le paramètre (λ) est distribué selon une Gamma. C'est un cas particulier (p=1) de la Bêta prime généralisée.
    • La loi log-logistique, ou distribution de Fisk, (f ~ (a/x)b+1/((a/x)b+1)2) est la loi d'une variable aléatoire dont le logarithme est distribué selon une Loi logistique. Elle est utilisée pour modéliser des durées de vie, des débits de cours d'eau, des distributions de revenus.
    • La loi de Burr, ou de Singh-Maddala, ou loi log-logistisque généralisée, (f ~ xap-1/(xa+k)p+1) est communément utilisée pour étudier les revenus des ménages.
    • La loi de Dagum, ou Burr inverse, (f ~ xa-1/(xa+k)b+1) est la distribution de l'inverse d'une v.a. de distribution Burr. Il existe une loi de Dagum de type I à trois paramètres et une loi de Dagum de type II à quatre paramètres, qui ajoute un point de masse en zéro.
  • La loi F ou loi de Fisher ou de Fisher-Snedecor (f ~ (ax/(ax+b))a(b/(ax+b))b/x) est la distribution du ratio de deux v.a. khi-carrées indépendantes normalisées (c.-à.-d. divisées par leur degré de liberté). Elle s'utilise pour effectuer des tests en régression multiple et en analyse de la variance (ANOVA). Le carré d'une T de Student est une F de paramètre (1,m).
    • Le T² de Hotelling est la distribution d'une transformée de F, qui s'utilise pour effectuer des tests d'analyse de variance.
    • La loi F non centrée généralise la F au ratio de deux v.a. khi-carrées non centrées indépendantes normalisées.
    • La distribution du ratio de deux v.a. khi-carrées indépendantes non normalisées (c.-à.-d. non divisées par leur degré de liberté) est la loi bêta prime.
  • La loi de Pareto a des applications dans l'étude de la répartition des richesses, entre autres. Elle a quatre types.
    • La Pareto (type I), ou « distribution puissance », (f ~ (x)-c-1 c>0).
    • La Pareto type II (f ~ (a+bx)-c-1 avec b,c>0).
      • La loi de Lomax est un cas particulier de Pareto type II (f ~ (1+bx)-c-1 avec b,c>0).
    • La Pareto type III (f ~ (a+bxk)-1 ).
    • La Pareto type IV (f ~ (a+bxk)-c-1 ) .
  • La loi de Feller-Pareto est une généralisation supplémentaire de la type IV, à 5 paramètres.
  • La loi de Pareto généralisée (f ~ (a+bx/c)-c-1 ) a pour support [µ,∞[ si c > 0 et [µ,µ-b/c[ si c > 0 . Elle se réduit à une exponentielle si c tend vers 0.
  • Distributions d'extrema (voir GEV ou loi de Fisher-Tippett)
    • La loi de Weibull ordinaire, ou de Rosin-Rammler, (f ~ xa-1e-bxa) est la distribution d'un minimum. Elle décrit la durée de vie de composants techniques, ou la distribution des tailles des particules produites par des opérations de concassage. Elle a pour cas particuliers la loi exponentielle (a=1) et la loi de Rayleigh (a=2).
    • La poly-Weibull est la distribution du minimum de plusieurs Weibull de paramètres différents.
    • La Weibull exponentiée (f ~ k(1-e-bxa)k-1xa-1e-bxa) est une généralisation.
    • La loi de Weibull renversée, ou loi de Fisher-Tippett de type III, (f ~ (m-x)a-1e-b(m-x)a) est la distribution d'un maximum. Elle a pour domaine x<m.
    • La loi de Fréchet, ou loi de Fisher-Tippett de type II, (f ~ e-axe-be-ax) est aussi une distribution de maximum. Son domaine est x>0.
    • La loi de Gumbel (de type 2), (f ~ x-a-1e-bx-a) est aussi une Fréchet si b=1.
    • La loi de Gompertz (f ~ e-axe-be-ax) , une Gumbel renversée, décrit des extrema et des taux de mortalité.
    • La loi de Gompertz avec dérive (f ~ be-bxe-ce-bx[1+c(1-e-bx)]) , décrit le maximum d'une Exponentielle et d'une Gumbel.
    • La loi gamma-Gompertz est une mixture gamma de lois Gompertz.
  • La loi Exponentielle-Logarithmique (f ~ qe-bx/(1-qe-bx) est la distribution du minimum d'un nombre N de variables exponentielles, où N a une distribution logarithmique.
  • La loi de Birnbaum–Saunders, ou loi du temps d'usure, est construite à partir de la Normale, appliquée à une transformation \sqrt {x} + \sqrt {1/x}. Elle a des applications en contrôle de qualité et modélisation des durées de vie de systèmes mécaniques.
  • La loi de Planck (f ~ x-c/eb/x-1) s'utilise en physique statistique.
    • La loi de Davis la généralise en remplaçant x par x-m et a été utilisée pour modéliser des distributions de revenus.
  • La loi log-Cauchy est la distribution d'une variable dont le logarithme suit une distribution de Cauchy.
  • La loi log-Laplace est la distribution d'une variable dont le logarithme suit une distribution de Laplace.

Sur la droite des réels[modifier | modifier le code]

Lois qui portent le nom de leur forme fonctionnelle :


  • La loi normale, ou courbe de Gauss ou courbe en cloche (« bell curve »), (φ ~ e-(x-m)²/2s²) est extrêmement fréquente dans la nature comme dans les applications statistiques, du fait du théorème central limite : tout phénomène modélisable comme une somme de nombreuses variables indépendantes, de moyenne et variance finies, a une distribution asymptotiquement normale.
    • La loi normale standard (f ~ e-x²/2) en est le cas s=1, m=0.
    • La loi normale généralisée de type I, ou loi de puissance exponentielle ou loi d'erreur généralisée, (f ~ e-a(|x-m|/s)k) a été utilisée pour modifier la forme de la normale, sans affecter la symétrie.
    • La loi normale asymétrique (f ~ 2φ(x)Φ(ax)) introduit une asymétrie.
  • La loi hyperbolique (f ~ e-(x-m)-aV(d²+(x-m)²)) peut se définir comme une mixture de Normales.
  • La loi t ou loi t de Student (f ~ (k+x²)-(k+1)/2) est utilisée dans de nombreux tests statistiques d'estimation de moyenne ou de régression linéaire. Une variable T de Student est le ratio d'une Normale standard et de la racine d'une Khi-carrée normalisée.
    • La loi t non centrale est basée sur une Normale(µ,1) (= non centrée).
    • Il existe une loi t non standard : distributions de la variable µ + σt, où t est une Student, et une loi t discrétisée.
  • La loi de Laplace (f ~ e-|x-m|/s) a pour cas particulier, quand m=0, la Double Exponentielle, qui est la distribution de la différence de deux Exponentielles. C'est une loi stable.
  • La loi de Cauchy (f ~ (ax2-b)-1) est la distribution du ratio de deux normales centrées, autrement dit de la tangente de l'angle formé par ces deux Normales dans le plan. C'est un exemple de distribution sans espérance ni variance finies. En physique, elle porte le nom de fonction de Lorentz. C'est une loi stable.
    • La loi de Voigt, ou profil de Voigt, est la convolution d'une Normale et d'une Cauchy. Elle trouve des applications en spectroscopie.
  • La loi de Holtsmark est un exemple de distribution à espérance finie mais variance infinie. C'est une loi stable.
  • La loi de Landau est aussi une loi stable. Les moments de la loi de Landau ne sont pas définis, en particulier la moyenne et la variance. Elle est utilisée en physique pour décrire les fluctuations des pertes d'énergie de particules chargées traversant une fine couche de matière.
  • Distributions d'extrema (voir GEV ou loi de Fisher-Tippett)
    • La loi de Gumbel (de type 1), ou loi de Fisher-Tippett de type I, (f ~ e-a(x-m)e-be-a(x-m)), est aussi appelée log-Weibull, parce qu'elle est la distribution du logarithme d'une Weibull. Elle est la distribution du maximum observé parmi plusieurs données.
    • La loi de Gumbel standard (f ~ e-xe-e-x) en est le cas a=b=1, m=0.

Domaine variable[modifier | modifier le code]

  • La loi d'extremum généralisée, ou GEV (pour generalized extreme value) ou loi de Fisher-Tippett, (f ~ (ax+b)c-1e-(ax+b)c) a comme cas particuliers les distributions Gumbel (ou type I) de domaine égal à l'ensemble des réels, Fréchet (ou type II) de borne inférieure finie et Weibull renversée (ou type III) de borne supérieure finie.
  • La loi de Pareto généralisée (f ~ (kx+b)-c) peut être bornée inférieurement (k≤0) ou bornée des deux côtés (k>0).
  • La loi de Tukey-Lambda a pour domaine la droite des réels ou un intervalle borné selon la valeur d'un de ses paramètres. Elle se définit par ses quantiles ; sa fonction de densité n'a pas de forme close.

Distributions mixtes discrète/continues[modifier | modifier le code]

Ces distributions ont des points de masse parmi les valeurs continues. L'exemple le plus courant est celui du temps d'attente (à un feu de circulation, à un guichet) : il y a une probabilité que le temps soit égal à zéro s'il ne faut pas attendre (point de masse), puis une distribution continue s'il y a attente.

Distribution singulière[modifier | modifier le code]

  • La loi de Cantor a un domaine qui n'est ni discret, ni continu, mais fractal.


Distributions multivariées[modifier | modifier le code]

Lorsque les variables aléatoires sont indépendantes, la fonction de densité de leur distribution conjointe est le produit des fonctions de densité individuelles.

Vecteur de variables aléatoires de domaines indépendants[modifier | modifier le code]

Vecteur aléatoire de domaine contraint[modifier | modifier le code]

Simplexe

  • La loi multinomiale (f ~ CNx,y...z p1x p2y ... pkz ) généralise la loi binomiale à plus de deux résultats possibles.
    • La loi multihypergéométrique fait de même pour la loi hypergéométrique.
    • La distribution catégorielle, ou multi-Bernoulli, n'est autre que la loi multinomiale lorsque le nombre de tirages N vaut 1. C'est une généralisation de la Bernoulli à une expérience présentant plus de deux résultats possibles. N.B. : elle est parfois présentée comme « distribution à support non numérique » ou « qualitatif », parce qu'elle dénombre la présence de tels critères, par exemple les nationalités dans un sondage.

Disque

  • La distribution d'Airy est uniforme sur un disque.

Sphère

  • La loi de Kent, ou de Fisher-Bingham, est une sorte de normale bivariée sur la sphère tridimensionnelle.
  • La loi de von Mises-Fisher (en) généralise la von Mises sur la sphère N-dimensionnelle.

Matrices aléatoires[modifier | modifier le code]

Familles[modifier | modifier le code]

Certaines distributions ont des propriétés utiles qu'elles partagent avec d'autres. Parfois, ces « sœurs » peuvent être formulées comme des cas particuliers d'une expression générale.

Pour une description plus précise de la notion de famille, voir famille exponentielle.

Adaptations[modifier | modifier le code]

Voir aussi[modifier | modifier le code]