Médiane (statistiques)

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Médiane.

En théorie des probabilités et en statistiques, une médiane d'un ensemble de valeurs (échantillon, population, distribution de probabilités) est une valeur m qui permet de couper l'ensemble des valeurs en deux parties égales : mettant d'un côté une moitié des valeurs, qui sont toutes inférieures ou égales à m et de l'autre côté l'autre moitié des valeurs, qui sont toutes supérieures ou égales à m (s'il y a un nombre impair de valeurs, la valeur centrale sera mise des deux côtés). Intuitivement, on peut dire que la médiane est le point milieu de l'ensemble[1], qu'elle divise en deux moitiés. C'est une caractéristique de position de la série. On peut déterminer une médiane pour un ensemble de valeurs non numériques[1] pour autant qu'on puisse choisir un critère d'ordonnancement de ces valeurs.

Mode de calcul[modifier | modifier le code]

Démarche générale[modifier | modifier le code]

Pour déterminer la médiane d'un ensemble de valeurs, il suffit d'ordonner les valeurs en une liste croissante et de choisir la valeur qui est au centre de cette liste. Pour une liste ordonnée de 2N+1 éléments, la valeur du (N+1)-ième élément est la médiane. Pour une liste ordonnée de 2N éléments, toute valeur comprise entre l'élément N et l'élément N+1 est une médiane; en pratique, dans le cas d'une liste de nombres, c'est la moyenne arithmétique de ces deux valeurs centrales qui est le plus souvent utilisée.

La complexité de l'algorithme de calcul de la médiane est donc la complexité de l'algorithme de tri utilisé, soit au mieux O(n log n).

Exemples

  • Ensemble de 7 entiers : {12, 5, 6, 89, 5, 2390, 1}. Après tri, la série est 1, 5, 5, 6, 12, 89, 2390. La médiane est le 4e élément de cette série, donc 6 : trois valeurs de l'ensemble sont inférieures ou égales à 6, et trois sont supérieures ou égales à 6.
  • Ensemble de 6 entiers : {12, 5, 6, 89, 5, 1}. Après tri, la série est 1, 5, 5, 6, 12, 89. Toute valeur comprise entre le 3e et le 4e éléments de cette série, donc entre 5 et 6, peut être choisie comme médiane. Trois éléments sont inférieurs ou égaux à 5,1 et trois y sont supérieurs, donc 5,1 est une médiane, mais c'est aussi le cas de 5,141 59 ou de 5,5. On prendra généralement cette dernière valeur comme médiane puisqu'elle est la moyenne arithmétique des deux éléments centraux 5 et 6.
  • Supposons 21 personnes dans une pièce. Chacune prend l'argent de sa poche et le pose sur une table : 20 personnes posent 5 euros, et la dernière pose 10 000 euros. La médiane est l'élément central, le onzième, de la liste ordonnée 5, 5, 5, …, 5, 10 000. C'est donc 5 : onze personnes détenaient chacune au moins 5 euros, et onze détenaient au plus 5 euros. On remarque que si la personne la plus riche ne s'était pas présentée, la médiane aurait été la même (5€), mais la moyenne aurait radicalement changé (5 € au lieu de 480,95 €).
  • Un sondage express réalisé auprès de 50 utilisateurs de Wikipédia révèle que 12 des sondés se disent très satisfaits, 7 très insatisfaits, 20 plutôt satisfaits et les autres se disent plutôt insatisfaits. Cet ensemble de réponses peut être rangé par satisfaction croissante, et on obtient une liste de cinquante éléments dans cet ordre : 7 très insatisfaits, 11 plutôt insatisfaits, 20 plutôt satisfaits, 12 très satisfaits. Les deux éléments centraux, le 25e et le 26e, ont la même valeur : « plutôt satisfait ». Cette valeur est donc la valeur médiane de l'ensemble des réponses.

Efficacité des algorithmes[modifier | modifier le code]

Il existe des algorithmes de complexité linéaire (en O(n)), donc plus performants[2]. Il s'agit d'algorithmes qui permettent de manière générale de déterminer le k-ième élément d'une liste de n éléments (voir en:Selection algorithm) ; k = n/2 pour la médiane. Ce sont des adaptations des algorithmes de tri, mais qui sont plus performants du fait que l'on ne s'intéresse pas à toutes les valeurs. On peut par exemple utiliser l'algorithme diviser pour régner en seulement O(n) opérations ; c'est le cas de l'algorithme quickselect, variation du quicksort, qui est en général en O(n) mais peut être en O(n2) dans le pire des cas.

Mesure de la dispersion statistique[modifier | modifier le code]

Lorsque la médiane est utilisée pour situer des valeurs en statistiques descriptives, il existe différentes possibilités pour exprimer la variabilité : L'étendue, l'écart interquartile et l'écart absolu. Puisque la médiane est la même valeur que le deuxième quartile, son calcul est détaillé dans l'article sur les quartiles.

Médianes dans les distributions de probabilités[modifier | modifier le code]

Pour toutes distributions de probabilités réelles, la médiane m satisfait l'égalité :

\operatorname{P}(X\leq m) \geq \frac{1}{2}\text{ et }\operatorname{P}(X\geq m) \geq \frac{1}{2}\,\!

c'est-à-dire en termes de fonction de répartition :

F_X(m) = 1 - \lim_{x \to m^-} F_X(x).

Ainsi pour une distribution de probabilités diffuse (fonction de répartition continue) :

F_X(m) = \frac{1}{2}.

Médianes de certaines distributions[modifier | modifier le code]

Pour toutes les distributions symétriques, la médiane est égale à l'espérance.

Médianes en statistiques descriptives[modifier | modifier le code]

La médiane est principalement utilisée pour les distributions asymétriques, car elle les représente mieux que la moyenne arithmétique. Considérons l'ensemble { 1, 2, 2, 2, 3, 9 }. La médiane est 2, tout comme le mode, ce qui est une meilleure mesure de tendance centrale que la moyenne arithmétique égale à 3,166….

Le calcul de la médiane est couramment effectué pour représenter différentes distributions et elle est facile à comprendre, tout comme à calculer. Elle est aussi plus robuste que la moyenne en présence de valeurs extrêmes.

Propriétés théoriques[modifier | modifier le code]

Propriété optimale[modifier | modifier le code]

La médiane est aussi la valeur centrale qui minimise la valeur moyenne des écarts absolus. Dans la série donnée auparavant, ce serait (1 + 0 + 0 + 0 + 1 + 7) / 6 = 1,5, plutôt que 1,944 à partir de la moyenne, qui, elle, minimise les écarts quadratiques. En théorie des probabilités, la valeur c qui minimise

E(\left|X-c\right|)\,

est la médiane de la distribution de probabilités de la variable aléatoire X.

Inégalité impliquant les moyennes et les médianes[modifier | modifier le code]

Pour les distributions continues de probabilités, la différence entre la médiane et l'espérance est au plus d'un écart type.

Notes et références[modifier | modifier le code]

  1. a et b Cf. Statistique Canada: Calcul de la médiane
  2. [(en) Selection (deterministic & randomized): finding the median in linear time]

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]