Loi log-Cauchy

Un article de Wikipédia, l'encyclopédie libre.

Loi log-Cauchy
Image illustrative de l’article Loi log-Cauchy
Densité de probabilité

Image illustrative de l’article Loi log-Cauchy
Fonction de répartition

Paramètres
Support
Densité de probabilité
Fonction de répartition
Espérance n'existe pas
Médiane
Variance infinie
Asymétrie n'existe pas
Kurtosis normalisé n'existe pas
Fonction génératrice des moments n'existe pas

En théorie des probabilités et en statistique, la loi log-Cauchy est la loi de probabilité d'une variable aléatoire dont le logarithme suit une loi de Cauchy. Si X suit une loi de Cauchy, alors est de loi log-Cauchy ; similairement, si Y suit une loi log-Cauchy, alors est de loi de Cauchy[1].

Cette loi dépend de deux paramètres et . Si une variable X suit une loi log-Cauchy, on notera .

Caractérisation[modifier | modifier le code]

Densité de probabilité[modifier | modifier le code]

La densité de probabilité de la loi log-Cauchy est donnée par :

est un nombre réel et [1],[2]. Si est connu, le paramètre d'échelle est [1]. Les paramètres et correspondent respectivement aux paramètres de position et d'échelle de la loi de Cauchy associée[1],[3]. Certains auteurs définissent et comme, respectivement, les paramètres de position et d'échelle de la loi log-Cauchy[3].

Pour et , la loi log-Cauchy est associée à la loi de Cauchy standard, la densité de probabilité est alors réduite à[4] :

Fonction de répartition[modifier | modifier le code]

La fonction de répartition pour et est[4] :

Fonction de survie[modifier | modifier le code]

La fonction de survie pour et est[4] :

Taux de défaillance[modifier | modifier le code]

Le taux de défaillance pour et est[4] :

Le taux de hasard décroit au début et sur la dernière partie du support de la densité, mais il peut exister un intervalle sur lequel le taux de hasard croît[4].

Propriétés[modifier | modifier le code]

La loi log-Cauchy est un exemple de loi à queue lourde[5]. Certains auteurs la considère comme une loi à « queue super-lourde », car elle possède une queue plus lourde que celles de type de la distribution de Pareto, c'est-à-dire qu'elle a une décroissance logarithmique[5],[6]. Comme avec la loi de Cauchy, aucun des moments (non triviaux) de la loi log-Cauchy n'est fini[4]. La moyenne et l'écart-type étant des moments, ils ne sont pas définis pour la loi log-Cauchy[7],[8].

La loi log-Cauchy est infiniment divisible pour certains paramètres[9]. Comme les lois log-normale, log-Student et de Weibull, la loi log-Cauchy est un cas particulier de loi bêta généralisée du second type[10],[11]. La loi log-Cauchy est en fait un cas particulier de la loi log-Student, comme la loi de Cauchy est un cas particulier de la loi de Student à un degré de liberté[12],[13].

Puisque la loi de Cauchy est une loi stable, la loi log-Cauchy est une loi log-stable[14].

Estimation des paramètres[modifier | modifier le code]

La médiane du logarithme naturel d'un échantillon est un estimateur robuste de [1].

Références[modifier | modifier le code]

  1. a b c d et e (en) Olive, D.J., « Applied Robust Statistics », Southern Illinois University, (consulté le ), p. 86
  2. (en) Lindsey, J.K., Statistical analysis of stochastic processes in time, Cambridge University Press, , 354 p. (ISBN 978-0-521-83741-5), p. 33, 50, 56, 62, 145
  3. a et b (en) Mode, C.J. & Sleeman, C.K., Stochastic processes in epidemiology : HIV/AIDS, other infectious diseases, World Scientific, , 29–37 p. (ISBN 978-981-02-4097-4, lire en ligne)
  4. a b c d e et f (en) Marshall, A.W. & Olkin, I., Life distributions : structure of nonparametric, semiparametric, and parametric families, Springer, , 443–444 p. (ISBN 978-0-387-20333-1)
  5. a et b (en) M. Falk, J. Hüsler et R. Reiss, Laws of Small Numbers : Extremes and Rare Events, Springer, , 3e éd., 80 p. (ISBN 978-3-0348-0008-2)
  6. (en) Alves, M.I.F., de Haan, L. & Neves, C., « Statistical inference for heavy and super-heavy tailed distributions »,
  7. (en) « Moment », Mathworld (consulté le )
  8. (en) Y. Wang, « Trade, Human Capital and Technology Spillovers: An Industry Level Analysis », Review of International Economics, vol. 15, no 2,‎ , p. 269-283 (lire en ligne)
  9. (en) Bondesson, L., « On the Levy Measure of the Lognormal and LogCauchy Distributions », Methodology and Computing in Applied Probability, Kluwer Academic Publications, (consulté le ), p. 243–256
  10. (en) Knight, J. & Satchell, S., Return distributions in finance, Oxford/Boston, Butterworth-Heinemann, (ISBN 978-0-7506-4751-9), p. 153
  11. (en) Kemp, M., Market consistency : model calibration in imperfect markets, Wiley, , 376 p. (ISBN 978-0-470-77088-7)
  12. (en) MacDonald, J.B., Statistical distributions in scientific work: proceedings of the NATO Advanced Study Institute, Springer, (ISBN 978-90-277-1334-6), « Measuring Income Inequality », p. 169
  13. (en) Kleiber, C. & Kotz, S., Statistical Size Distributions in Economics and Actuarial Science, Wiley, , 101–102, 110 (ISBN 978-0-471-15064-0)
  14. (en) Panton, D.B., « Distribution function values for logstable distributions », Computers & Mathematics with Applications, vol. 25, no 9,‎ , p. 17–24 (DOI 10.1016/0898-1221(93)90128-I, lire en ligne, consulté le )