Probabilité

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Probabilité (homonymie).
Page d'aide sur l'homonymie Cet article présente les notions générales concernant les probabilités ; pour une approche élémentaire du calcul des probabilités voir Probabilités (mathématiques élémentaires), pour la théorie mathématique rigoureuse correspondante, voir Théorie des probabilités, pour l'historique de ces notions, voir Histoire des probabilités.

Le terme probabilité possède plusieurs sens : venu historiquement du latin probabilitas, il désigne l'opposé du concept de certitude ; il est également une évaluation du caractère probable d'un événement, c'est-à-dire qu'une valeur permet de représenter son degré de certitude ; récemment, la probabilité est devenue une science mathématique et est appelée théorie des probabilités ou plus simplement probabilités; enfin une doctrine porte également le nom de probabilisme.

La probabilité d'un événement est un nombre réel compris entre 0 et 1. Plus ce nombre est grand, plus le risque, ou la chance, que l'événement se produise est grand. L'étude scientifique des probabilités est relativement récente dans l'histoire des mathématiques. L'étude des probabilités a connu de nombreux développements depuis le XVIIIe siècle grâce à l'étude de l'aspect aléatoire et en partie imprévisible de certains phénomènes, en particulier les jeux de hasard. Ceux-ci ont conduit les mathématiciens à développer une théorie qui a ensuite eu des implications dans des domaines aussi variés que la météorologie, la finance ou la chimie.

Historique[modifier | modifier le code]

Article détaillé : Histoire des probabilités.

À l'origine, dans les traductions d'Aristote, le mot « probabilité » ne désigne pas une quantification du caractère aléatoire d'un fait mais l'idée qu'une idée est communément admise par tous. Ce n'est qu'au cours du Moyen Âge puis de la Renaissance autour des commentaires successifs et des imprécisions de traduction de l'œuvre d'Aristote que ce terme connaîtra un glissement sémantique pour finir par désigner la vraisemblance d'une idée.

L'apparition de la notion de « risque », préalable à l'étude des probabilités, n'est apparue qu'au XIIe siècle pour l'évaluation de contrats commerciaux avec le Traité des contrats de Pierre de Jean Olivi[1], et s'est développée au XVIe siècle avec la généralisation des contrats d'assurance maritime[2]. À part quelques considérations élémentaires par Girolamo Cardano[3] au début du XVIe siècle et par Galilée au début du XVIIe siècle, le véritable début de la théorie des probabilités date de la correspondance entre Pierre de Fermat et Blaise Pascal en 1654.

C'est dans la deuxième moitié du XVIIe siècle, à la suite des travaux de Blaise Pascal, Pierre de Fermat et Christian Huygens[b 1],[a 1] sur le problème des partis que le terme « probabilité » prend peu à peu son sens actuel avec les développements du traitement mathématique du sujet par Jakob Bernoulli.

Au XVIIIe siècle, Gabriel Cramer donne un cours sur la logique probabiliste qui deviendra une base à l'article probabilité de l'encyclopédie de Diderot écrite à la fin de ce même siècle[a 2]. Ce n'est alors qu'au XIXe siècle qu'apparaît ce qui peut être considéré comme la théorie moderne des probabilités en mathématiques.

Le calcul des probabilités prend un nouvel essor au début du XXe siècle avec l'axiomatique de Kolmogorov, commence alors la théorie des probabilités. Les probabilités deviennent une science et une théorie comme branche des mathématiques[4].

Terminologies[modifier | modifier le code]

Ainsi il existe plusieurs notions que nous détaillerons dans les sections suivantes :

  • la probabilité d'un fait caractérise la possibilité que ce fait se produise, une vraisemblance, une apparence de vérité[a 3]. (définition 2 du Larousse[a 4]). Le probable, la connaissance probable ou la logique probabiliste[a 2] sont des termes utilisés notamment au XVIIIe siècle pour désigner une connaissance intermédiaire entre la certitude de la vérité et la certitude de la fausseté.
    Voir l'article du wiktionnaire : probable,
  • les probabilités d'un fait donnent le pourcentage de chance qu'un fait se produise, c'est-à-dire qu'elles donnent une ou plusieurs valeurs (ou pourcentage) de la possibilité qu'il se produise. Cette notion se rapproche de la notion mathématique de loi de probabilité (définition 1 du Larousse[a 4]). Plus formellement c'est le rapport du nombre de cas favorables au nombre de cas possibles[a 3].
    Voir l'article : probabilités (mathématiques élémentaires),
  • les probabilités ou le calcul des probabilités ou la théorie des probabilités est la théorie mathématique qui étudie le caractère probable des événements (définition 1 du Larousse[a 4]).
    Voir l'article : théorie des probabilités,
  • la doctrine des probabilité ou probabilisme est une doctrine de théologie morale qui enseigne qu'on peut suivre une opinion pourvu qu'elle soit probable[a 3].
    Voir l'article : probabilisme.

Probabilité et certitude[modifier | modifier le code]

Le premier usage du mot probabilité apparaît en 1370 avec la traduction de l'éthique à Nicomaque d'Aristote par Oresme et désigne alors « le caractère de ce qui est probable »[a 3]. Le concept de probable chez Aristote (ενδοξον, en grec) est ainsi défini dans les Topiques[5] :

« Sont probables les opinions qui sont reçues par tous les hommes, ou par la plupart d’entre eux, ou par les sages, et parmi ces derniers, soit par tous, soit par la plupart, soit enfin par les plus notables et les plus illustres »

Ce qui rend une opinion probable chez Aristote est son caractère généralement admis[a 5]; ce n'est qu'avec la traduction de Cicéron des Topiques d'Aristote, qui traduit par probabilis ou par verisimilis, que la notion de vraisemblance est associée à celle de « probabilité » ce qui aura un impact au cours du Moyen Âge puis de la Renaissance avec les commentaires successifs de l'œuvre d'Aristote[a 6].

Une phrase, situation ou proposition est vraie ou fausse. Sa probabilité est la « connaissance évidente de la vérité ou de la fausseté d'une proposition »[a 2]. La notion d'incertitude est quant à elle le défaut de cette connaissance. Pour une proposition, il existe alors trois cas[a 2] :

  • La proposition est reconnue comme vraie avec certitude,
  • La proposition est reconnue comme fausse avec certitude,
  • Elle est probable si on ne peut la reconnaître vraie ou fausse. Dans ce cas, il est possible de mesurer une certaine vraisemblance par la connaissance du nombres de conditions requises pour être reconnue vraie.

Cette représentation développée par Cramer permet de faire apparaître une manière de mesurer la notion d'incertitude ou de probable. Il donne alors la définition suivante de la probabilité :

Définition (Gabriel Cramer)[a 2] — Puisque la certitude entière naît de l'assurance que l'on a de l'existence de toutes les conditions requises pour certaines vérités, et la probabilité de la connaissance qu'on a de l'existence de quelques unes de ces conditions, on regarde la certitude comme un tout et la probabilité comme une partie. Le juste degré de probabilité d'une proposition sera donc exactement connu quand on pourra dire et prouver que cette probabilité monte à demi certitude ou au trois quart de la certitude entière, ou seulement au tiers de la certitude, etc.

Les probabilités d'un événement[modifier | modifier le code]

Comme précisé précédemment, la notion de probabilité permet de quantifier le hasard. La formalisation du début du XXe siècle est aujourd'hui unanimement utilisée. (par exemple, voir l'ouvrage de Jacod et Protter[6] pour cette section)

La probabilité d'un certain événement A, notée \scriptstyle\mathbb{P}(A), associe une valeur entre 0 et 1 que l'événement se réalise. Lorsque \scriptstyle\mathbb{P}(A)=1, l'événement est dit presque sûr (ou quasi certain), c'est-à-dire qu'il a « toutes les chances » de se réaliser. À l'inverse si \scriptstyle\mathbb{P}(A)=0, A est dit négligeable (ou quasi impossible), c'est-à-dire qu'il a une chance nulle de se réaliser.

La probabilité d'un événement A peut s'obtenir de manière fréquentiste, notamment lorsqu'il est possible de faire une expérience plusieurs fois et de compter le nombre de succès de l'expérience. En effet, si on effectue n fois une expérience et que dans \scriptstyle n_A fois des cas, l'événement A est réalisé, alors, la probabilité de A est donnée par :

\mathbb P(A)=\lim_{n\rightarrow \infty} \frac{n_A}{n}.

De manière plus probabiliste, lorsque le nombre de résultats possible de l'expérience est fini, la probabilité de A est définie par :

\mathbb P(A)=\frac{\text{nombre de cas où A se réalise}}{\text{nombre de cas possibles}}.

Mathématiquement, l'événement A est un sous-ensemble d'un ensemble \scriptstyle \Omega qui représente toutes les éventualités possibles. Pour obtenir une théorie, des axiomes ont été proposés par Kolmogorov : la probabilité \scriptstyle\mathbb{P} doit vérifier :

  1. pour tout événement \scriptstyle A, \scriptstyle 0\leq \mathbb P(A)\leq 1,
  2. \scriptstyle \mathbb P(\Omega) = 1,
  3. \scriptstyle \mathbb P(A \cup B)=\mathbb P(A) + \mathbb P(B) pour \scriptstyle A\cap B=\emptyset.

Grâce à cette description, plusieurs notions peuvent s'écrire de manière mathématique.

Article détaillé : Indépendance (probabilités).

Deux événements sont dits indépendants si le fait de connaître la probabilité du premier événement ne nous aide pas pour prévoir la probabilité du second et inversement. Mathématiquement, cela s'écrit : \scriptstyle \mathbb P(AB)=\mathbb P(A)\mathbb P(B). Par exemple, la probabilité d'obtenir un as à un premier jeté de dé et d'obtenir un as au deuxième jeté de dé est la multiplication des deux probabilités et vaut 1/36.

Article détaillé : Probabilité conditionnelle.

Il est possible de considérer la probabilité d'un événement (notons le A) conditionnellement à un autre (noté B). Lorsque les deux événements ne sont pas indépendants, le fait de connaître la probabilité de l'un influence la probabilité de l'autre par la formule : \scriptstyle \mathbb P(A\mid B)=\mathbb P(A\cap B)/\mathbb P(B). Par exemple, la probabilité d'obtenir la somme des deux dés égale à 12 lorsque le premier dé a donné 6 vaut 1/6.

Des formules existent pour pouvoir calculer tout type de probabilité. C'est le cas de la formule de Poincaré, de la formule des probabilités totales ou du théorème de Bayes.

Théorie des probabilités[modifier | modifier le code]

Article détaillé : théorie des probabilités.

Encouragé par Pascal, Christian Huygens publie De ratiociniis in ludo aleae (raisonnements sur les jeux de dés) en 1657. Ce livre est le premier ouvrage important sur les probabilités. Il y définit la notion d'espérance et y développe plusieurs problèmes de partages de gains lors de jeux ou de tirages dans des urnes[7]. Deux ouvrages fondateurs sont également à noter : Ars Conjectandi de Jacques Bernoulli (posthume, 1713) qui définit la notion de variable aléatoire et donne la première version de la loi des grands nombres[8], et Théorie de la probabilité d' Abraham de Moivre (1718) qui généralise l'usage de la combinatoire[9].

La théorie de la probabilité classique ne prend réellement son essor qu'avec les notions de mesure et d'ensembles mesurables qu'Émile Borel introduit en 1897. Cette notion de mesure est complétée par Henri Léon Lebesgue et sa théorie de l'intégration[10]. La première version moderne du théorème de la limite centrale est donné par Alexandre Liapounov en 1901[11] et la première preuve du théorème moderne est donnée par Paul Lévy en 1910. En 1902, Andrei Markov introduit les chaînes de Markov[12] pour entreprendre une généralisation de la loi des grands nombres pour une suite d'expériences dépendant les unes des autres. Ces chaînes de Markov connaîtront de nombreuses applications entre autres pour modéliser la diffusion ou pour l'indexation de sites internet sur Google.

Il faudra attendre 1933 pour que la théorie des probabilités sorte d'un ensemble de méthodes et d'exemples divers et devienne une véritable théorie, axiomatisée par Kolmogorov[13].

Kiyoshi Itô met en place une théorie et un lemme qui porte son nom dans les années 1940[14]. Ceux-ci permettent de relier le calcul stochastique et les équations aux dérivées partielles faisant ainsi le lien entre analyse et probabilités. Le mathématicien Wolfgang Doeblin avait de son côté ébauché une théorie similaire avant de se suicider à la défaite de son bataillon en juin 1940. Ses travaux furent envoyés à l'Académie des sciences dans un pli cacheté qui ne fut ouvert qu'en 2000[15].

Axiomatique[modifier | modifier le code]

Au début du XXe siècle, Kolmogorov définit des axiomes mathématiques afin de pouvoir étudier le hasard. Ainsi il construit l'espace des possible appelé univers qui contient tous les hasards possibles, il le munit d'un ensemble qui contient les sous-ensembles de l'univers appelé tribu et d'une mesure de probabilité qui permet de calculer les probabilités correspondantes. L'espace \scriptstyle (\Omega, \mathcal A, \mathbb P) ainsi construit vérifie les trois axiomes des probabilités[16] :

  1. (positivité) la probabilité d'un événement est une valeur entre 0 et 1 : pour tout \scriptstyle A\in \mathcal A, \scriptstyle 0\leq \mathbb P(A)\leq 1,
  2. (masse unitaire) la probabilité de l'univers est 1 : \scriptstyle \mathbb P(\Omega) = 1,
  3. (additivité) pour toute suite dénombrable d'événements \scriptstyle A_1,A_2,\dots \in \mathcal A disjoints deux à deux, c'est-à-dire tels que \scriptstyle A_i\cap A_j=\emptyset pour tous \scriptstyle i\neq j, alors \scriptstyle \mathbb P(\bigcup_{i\geq 1}A_i)=\sum_{i\geq 1}\mathbb P(A_i).

Variables aléatoires, lois et caractérisations[modifier | modifier le code]

Article détaillé : Variable aléatoire.

Afin de pouvoir mieux manipuler le hasard, il est commode d'utiliser une variable aléatoire. Elle peut être réelle, mais peut aussi être un multidimensionnelle ou même plus générale. Cette variable réelle est, en théorie, une application : \scriptstyle X:\Omega \rightarrow \mathbb R [17] qui à chaque aléa \scriptstyle\omega\in \Omega, associe le résultat de l'expérience : \scriptstyle X(\omega).

Article détaillé : Loi de probabilité.

Cette variable possède une répartition de ces valeurs donnée par sa loi de probabilité qui est une mesure. Cette dernière peut être représentée de nombreuses manières, les plus communes sont par l'utilisation de la fonction de répartition, la densité de probabilité (si elle existe) ou la fonction de masse le cas échéant. De nombreuses propriétés des lois de probabilité, et donc des variables aléatoires, peuvent être étudiées : espérance, moments, indépendance entre plusieurs variables, etc.

Convergence et théorèmes limites[modifier | modifier le code]

Il est possible de considérer une infinité de variables aléatoires : \scriptstyle (X_n, n\in \mathbb N). Dans ce cas, y a-t-il une limite possible? La question de notion de convergence aléatoire se pose alors. Il existe plusieurs types de convergences[18] : la convergence en loi qui est la convergence de la loi de la variable (en tant que mesure), la convergence en probabilité, la convergence presque sûre ou encore la convergence en moyenne.

De nombreux théorèmes limites existent alors. Les plus connus sont : la loi des grands nombres qui annonce que la moyenne des n premières variables aléatoires converge vers la moyenne théorique de la loi commune des variables aléatoires[19] ; le théorème central limite qui donne la bonne renormalisation de la somme des variables aléatoires pour avoir une limite non triviale[20].

Calcul stochastique[modifier | modifier le code]

Le calcul stochastique est l'étude des phénomènes qui évoluent au cours du temps de manière aléatoire[21]. Le temps peut être modélisé de manière discrète, c'est-à-dire par les valeurs entières : \scriptstyle 0,1,2,\dots , dans ce cas le phénomène est représenté par une suite (infinie) de variables aléatoires : \scriptstyle (X_n,n\geq 0), c'est une marche aléatoire. Le temps peut également être modélisé de manière continue c'est-à-dire par des valeurs réelles \scriptstyle t\in \mathbb R_+ ou \scriptstyle t\in \mathbb R, il s'agit alors d'un processus stochastique \scriptstyle (X_t,t\geq 0).

Plusieurs propriétés sont alors liées au calcul stochastique : la propriété de Markov annonce que le mouvement futur du phénomène ne dépend que de l'état présent et non pas du mouvement passé ; la récurrence et la transience d'une chaîne de Markov assurent le retour ou le passage unique en un état donné ; une martingale est un processus tel que l'état futur est déterminé en moyenne par l'état présent, etc.

Doctrine des probabilités[modifier | modifier le code]

Article détaillé : probabilisme.

La doctrine de la probabilité, autrement appelée probabilisme, est une théologie morale catholique qui s'est développée au cours du XVIe siècle sous l'influence entre autres de Bartolomé de Medina et des jésuites. Avec l'apparition de la doctrine de la probabilité, ce terme connaîtra un glissement sémantique pour finir par désigner au milieu du XVIIe siècle le caractère vraisemblable d'une idée.

La probabilité d'une opinion désigne alors au milieu du XVIIe siècle la probabilité qu'une opinion soit vraie. Ce n'est qu'à partir de la fin du XVIIe siècle avec l'émergence de la probabilité mathématique que la notion de probabilité ne concernera plus seulement les opinions et les idées mais aussi les faits et se rapprochera de la notion de hasard[b 2] que l'on connaît aujourd'hui.

Interprétation des probabilités[modifier | modifier le code]

Lors de l'étude d'un phénomène aléatoire, il existe plusieurs façons d'aborder la notion de probabilité liée à ce phénomène[a 7].

  • La conception subjective de la probabilité d'un événement s'applique dans le cas où il est difficile, voire impossible, de connaître les différentes probabilités des résultats d'une expérience aléatoire. Notamment dans le cas où l'expérience ne peut se réaliser plusieurs fois dans les mêmes conditions. Les probabilités attribuées ne correspondent alors pas exactement à la réalité et leurs estimations peuvent varier selon les personnes et les situations.
    Par exemple : quelle est la probabilité de réussir à un examen? Pour connaître les chances d'obtenir une note donnée à un examen, il faut l'estimer suivant le candidat et sa situation par rapport à l'examen. Il n'est pas possible de réaliser plusieurs fois l'expérience puisqu'un examen ne peut se passer plus d'une fois dans la même configuration. Les probabilités estimées et choisies pour chaque note vérifient les axiomes de Kolmogorov mais sont subjectives.
  • La conception fréquentiste des probabilité d'un événement est plus historique. Elle permet d'attribuer les chances de réalisation de chaque événement par une méthode statistique, c'est-à-dire en réalisant plusieurs fois l'expérience et d'en déduire les probabilités liées aux événements. Idéalement il faudrait répéter l'expérience à l'infini pour obtenir les probabilités réelles de l'expérience, cependant, puisque ce n'est pas possible, les méthodes expérimentales donnent des probabilités empiriques. (voir la section Les probabilités d'un événement ci-dessus). Cette notion s'appelle également probabilité statistique ou probabilité a posteriori[a 3].
    Par exemple : un joueur possède un dé pipé dont il ne connaît pas le biais, c'est-à-dire que les valeurs du dé n'ont pas les mêmes chances d'apparaître. Une méthode possible est de réaliser un grand nombre de lancers et de compter les résultats obtenus. Les résultats sont alors approchés pour vérifier l'axiomatique de Kolmogorov.
  • La conception classique de la probabilité s'utilise dans le cas de situations prédéfinies considérées comme connues. Beaucoup de situations sont considérées comme aléatoires et équiprobables, c'est-à-dire que chaque événement élémentaire à la même chance d'apparaître. Cette conception est également appelée objective, probabilité mathématique ou probabilité a priori[a 3]
    Par exemple : un dé (non pipé) est supposé équilibré, c'est-à-dire que chaque valeur a une chance sur six d'apparaître. Lors d'une distribution de cartes, chaque donne est supposée apparaître avec les mêmes chances

Une notion philosophique apparaît alors : puisque nous ne connaissons la nature et le monde autour de nous que par notre expérience et notre point de vue, nous ne le connaissons que de manière subjective et ne pouvons estimer précisément les lois objectives qui les dirigent.

Applications[modifier | modifier le code]

Les jeux de hasard sont l'application la plus naturelle des probabilités mais de nombreux autres domaines s'appuient ou se servent des probabilités. Citons entre autres :

Liens avec la statistique[modifier | modifier le code]

Il existe plusieurs façons d'aborder les probabilités : le calcul a priori et le calcul a posteriori[22]. (voir la section interprétation des probabilités ci-dessus). Le calcul des probabilités a posteriori correspond à une attribution des valeurs des probabilités inconnues par une manière statistique.

Pour estimer les probabilités, les estimateurs statistiques sont utilisés afin de mieux approcher la variable recherchée[23]. Un estimateur est une valeur calculée à partir d'un échantillon de la population totale étudiée. Un estimateur est bien choisi, c'est-à-dire qu'il donnera une bonne estimation des valeurs recherchées, si c'est un estimateur sans biais et convergent ; autrement dit la moyenne empirique approche la moyenne théorique et l'estimateur converge vers la bonne variable aléatoire lorsque la taille de l'échantillon augmente. La méthode du maximum de vraisemblance permet de choisir un bon estimateur.

Par ces méthodes, il est possible de retrouver les paramètres inconnus d'une loi de probabilité associée au phénomène étudié[24].

La révision bayésienne est une autre méthode pour le calcul des probabilités a priori[a 8]. Celle-ci se fait grâce au théorème de Bayes :

\mathbb P(\textrm{hypothese}|\textrm{preuve}) = \frac{\mathbb P(\textrm{preuve}|\textrm{hypothese})\mathbb P(\textrm{hypothese})}{\mathbb P(\textrm{preuve})}.

Dans cette formule, l'hypothèse représente ce que l'on suppose a priori sur le phénomène aléatoire, la preuve est une partie du phénomène que l'on connaît et que l'on peut mesurer. Ainsi \scriptstyle\mathbb P(\textrm{hypothese}|\textrm{preuve}) permet de mesurer la vraisemblance de l'hypothèse que l'on fixe.

Exemple 1

La fréquence empirique permet d'estimer les probabilités. Dans un échantillon de n individus, il suffit de compter le nombre de fois où l'individu appartient à la catégorie A recherchée[25]. En notant \scriptstyle n_A ce nombre parmi les n tirages, la fréquence \scriptstyle \frac{n_A}{n} est proche de la probabilité \scriptstyle \mathbb P(A) recherchée. Lors de 400 lancers de pièces, si il apparaît 198 fois le côté face, alors on en déduit que la probabilité d'obtenir face est \scriptstyle \mathbb P(\text{obtenir face})=\frac{198}{400}= 0.495. C'est un cas particulier de la loi des grands nombres.

Exemple 2

Une liste de valeurs \scriptstyle x_1,x_2,\dots,x_n est connue, elle est supposée de loi normale dont la moyenne m est connue[24]. La question est de trouver l'écart type \scriptstyle\sigma de la loi normale. La statistique T définie par \scriptstyle T^2={1 \over n } \sum_{i=1}^n (x_i-m)^2 est un estimateur de \scriptstyle\sigma, c'est-à-dire qu'il tend vers \scriptstyle\sigma lorsque n tend vers l'infini.

Exemple 3

On se demande quel temps il fera demain, la météo permet d'obtenir des informations supplémentaires. Certaines données sont alors connues : la probabilité que la météo annonce un beau temps sachant qu'il fera effectivement beau : \scriptstyle \mathbb P(M|beau)=0.9, la probabilité que la météo annonce un beau temps sachant qu'il pleuvra : \scriptstyle \mathbb P(M|pleut)=0.2.

Une hypothèse est choisie : par exemple \scriptstyle \mathbb P(beau)=1/2, c'est-à-dire que l'on considère, a priori, qu'il y a une chance sur deux qu'il fera beau demain.

Il est alors possible de calculer la probabilité que la météo annonce un beau temps : \scriptstyle \mathbb P(M)=\mathbb P(M|beau)\mathbb P(beau)+\mathbb P(M|pleut)\mathbb P(pleut)=0.9 \times 1/2+0.2\times1/2=0.55, c'est-à-dire que la météo annonce un beau temps dans 55 % des cas. La probabilité qu'il fera beau demain sachant que la météo a annoncé beau temps est alors donnée par :

\mathbb P(\mathrm{beau|M})=\frac{\mathbb P(\textrm{M}|\textrm{beau})\mathbb P(\textrm{beau})}{\mathbb P(\textrm{M})}=0.9\times0.5/0.55.\approx 82%.

Il est alors possible de réviser une deuxième fois l'hypothèse qu'il fera beau en regardant un deuxième bulletin météo d'une source différente. On prendrait alors comme nouvelle hypothèse la probabilité d'avoir un beau temps nouvellement calculée.

Notes et références[modifier | modifier le code]

Notes[modifier | modifier le code]

  1. Ces trois auteurs n'ont jamais utilisé le terme « probabilité » dans le sens qu'il prend par la suite avec le « calcul des probabilités ».
  2. Pour désigner cette mathématique du probable, Pascal, en 1654, parle de « Géométrie du hasard ».

Références[modifier | modifier le code]

Ouvrages
  1. http://www.jehps.net/Juin2007/Piron_incertitude.pdf, Journ@l Électronique d’Histoire des Probabilités et de la Statistique
  2. http://www.jehps.net/Juin2007/Ceccarelli_Risk.pdf, Journ@l Électronique d’Histoire des Probabilités et de la Statistique
  3. http://www.cict.fr/~stpierre/histoire/node1.html site sur l'histoire des probabilités
  4. Aslangul 2004, p. 1
  5. Tricot 1990, p. 16
  6. Jacod et Protter 2003, p. 7
  7. Les probabilités : Approche historique et définition.
  8. http://www.cict.fr/~stpierre/histoire/node3.html, une histoire de la probabilité jusqu'à Laplace
  9. Ian Hacking L'émergence des probabilités
  10. http://www.cict.fr/~stpierre/histoire/node4.html histoire des probabilités de Borel à la seconde guerre mondiale
  11. Entre De Moivre et Laplace
  12. DicoMaths : Chaine de Markov
  13. un article sur la mise en place de l'axiomatisation des probabilités.
  14. Biographie d'Itô sur le site de Mac Tutor
  15. Bernard Bru et Marc Yor (éd.), « Sur l'équation de Kolmogoroff, par W Doeblin », C. R. Acad. Sci. Paris, Série I 331 (2000). Sur la vie de Doeblin, voir Bernard Bru, « La vie et l'œuvre de W. Doeblin (1915-1940) d'après les archives parisiennes », Math. Inform. Sci. Humaines 119 (1992), 5-51 et, en anglais, Biographie de Doeblin sur le site de Mac Tutor
  16. Sinaï 1992, p. 6
  17. Le Gall 2006, p. 93
  18. Bertoin 2000, p. 34
  19. Le Gall 2006, p. 120
  20. Le Gall 2006, p. 138
  21. Revuz et Yor 2004, p. 15
  22. Saporta 2006, p. 319
  23. Saporta 2006, p. 289
  24. a et b Saporta 2006, p. 292
  25. Saporta 2006, p. 278
Articles et autres sources
  1. Norbert Meusnier, « L’émergence d'une mathématique du probable au XVIIe siècle », Revue d'histoire des mathématiques, vol. 2,‎ 1996, p. 119-147 (lire en ligne).
  2. a, b, c, d et e Thierry Martin, « La logique probabiliste de Gabriel Cramer », Mathematics and social sciences, vol. 4, no 176,‎ 2006, p. 43-60 (lire en ligne)
  3. a, b, c, d, e et f « Définition de probabilité », sur CNRTL
  4. a, b et c « Définition : probabilité », sur Larousse
  5. Arnaud Macé, « Aristote - Définir, décrire, classer chez Aristote : des opérations propédeutiques à la connaissance scientifique des choses », Phulopsis,‎ 2006 (lire en ligne)
  6. Marta Spranzi Zuber, « Rhétorique, dialectique et probabilité au XVIe siècle », Revue de Synthèse, vol. 122, no 2-4,‎ 2001, p. 297-317 (lire en ligne)
  7. David Stadelmann, « Les conceptions de la probabilité: Comparaison des différentes approches »,‎ 2003
  8. Christian Robert, « L’analyse statistique bayésienne », Courrier des statistiques,‎ 2001 (lire en ligne)

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Bibliographie[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]