Loi de Fisher

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Fisher-Snedecor
Image illustrative de l'article Loi de Fisher
Densité de probabilité (ou fonction de masse)

Image illustrative de l'article Loi de Fisher
Fonction de répartition

Paramètres d_1>0,\ d_2>0 degré de liberté
Support x \in [0, +\infty[\!
Densité de probabilité (fonction de masse) \frac{\sqrt{\frac{(d_1\,x)^{d_1}\,\,d_2^{d_2}}
{(d_1\,x+d_2)^{d_1+d_2}}}}
{x\,\mathrm{B}\!\left(\frac{d_1}{2},\frac{d_2}{2}\right)}\!
Fonction de répartition I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2)\!
Espérance \frac{d_2}{d_2-2}\! pour d_2 > 2
Mode \frac{d_1-2}{d_1}\;\frac{d_2}{d_2+2}\! pour d_1 > 2
Variance \tfrac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\! pour d_2 > 4
Asymétrie \tfrac{(2 d_1 + d_2 - 2) \sqrt{8 (d_2-4)}}{(d_2-6) \sqrt{d_1 (d_1 + d_2 -2)}}\! pour d_2 > 6
Kurtosis normalisé 12\tfrac{d_1(5d_2-22)(d_1+d_2-2)+(d_2-4)(d_2-2)^2}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)} pour d_2 > 8

En théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue[1],[2],[3]. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que distribution de l'hypothèse nulle dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les test de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.

Caractérisation[modifier | modifier le code]

Une variable aléatoire réelle distribuée selon la loi de Fisher peut être construite comme le quotient de deux variables aléatoires indépendantes, U1 et U2, distribuées chacune selon une Loi du χ² et ajustées pour leurs nombres de degrés de liberté, respectivement d1 et d2 : \mathrm{F}(d_1, d_2) \sim \frac{U_1/d_1}{U_2/d_2}.

La densité de probabilité d'une loi de Fisher, F(d1, d2), est donnée par f(x) = \frac{\left(\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_1/2} \; \left(1-\frac{d_1\,x}{d_1\,x + d_2}\right)^{d_2/2}}{x\; \mathrm{B}(d_1/2, d_2/2)} pour tout réel x ≥ 0, où d1 et d2 sont des entiers positifs et B est la fonction bêta.

La fonction de répartition associée est : F(x)=I_{\frac{d_1 x}{d_1 x + d_2}}(d_1/2, d_2/2) I est la fonction bêta incomplète régularisée.

L'espérance, la variance valent respectivement \frac{d_2}{d_2-2}\! pour d2 > 2 et \frac{2\,d_2^2\,(d_1+d_2-2)}{d_1 (d_2-2)^2 (d_2-4)}\! pour d2 > 4. Pour d2 > 8, le kurtosis normalisé est \gamma_2 = 12\frac{d_1(5d_2-22)(d_1+d_2-2)+(d_2-4)(d_2-2)^2}{d_1(d_2-6)(d_2-8)(d_1+d_2-2)}.

Généralisation[modifier | modifier le code]

Une généralisation de la loi de Fisher est la loi de Fisher non centrée.

Distributions associées et propriétés[modifier | modifier le code]

  • Si \ X \sim \mathrm{F}(\nu_1, \nu_2) alors Y = \lim_{\nu_2 \to \infty} \nu_1 X est distribuée selon une loi du χ² \chi^2_{\nu_{1}};
  • La loi \mathrm{F}(\nu_1,\nu_2) est équivalente à la loi de Hotelling (\nu_1(\nu_1+\nu_2-1)/\nu_2)\operatorname{T}^2(\nu_1,\nu_1+\nu_2-1);
  • Si X \sim \operatorname{F}(\nu_1,\nu_2), alors  \frac{1}{X} \sim F(\nu_2,\nu_1);
  • Si X \sim \mathrm{t}(\nu)\! est distribuée selon une loi de Student alors X^2 \sim \operatorname{F}(1, \nu);
  • Si X \sim \mathrm{N}\! est distribuée selon une loi normale alors X^2 \sim \operatorname{F}(1, \infty);
  • Si X \sim \operatorname{F}(\nu_1,\nu_2) et Y=\frac{\nu_1 X/\nu_2}{1+\nu_1 X/\nu_2} alors Y \sim \operatorname{Beta}(\nu_1/2,\nu_2/2) est distribuée selon une loi bêta;
  • Si \operatorname{Q}_X(p) est le quantile d'ordre p pour X\sim \operatorname{F}(\nu_1,\nu_2) et que \operatorname{Q}_Y(p) est le quantile d'ordre p pour Y\sim \operatorname{F}(\nu_2,\nu_1) alors \operatorname{Q}_X(p)=1/\operatorname{Q}_Y(p).

Table de Fisher-Snedecor[modifier | modifier le code]

Définition du 95e centile d'une loi de Fisher-Snedecor.
Table de Fisher-Snedecor, α = 5 % (95e centile)
ν2
(dén.)
ν1 (numérateur)
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 80 100 200 500 1 000
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 248.02 250.10 251.14 251.77 252.20 252.72 253.04 253.68 254.06 254.19
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.46 19.47 19.48 19.48 19.48 19.49 19.49 19.49 19.49
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.62 8.59 8.58 8.57 8.56 8.55 8.54 8.53 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.75 5.72 5.70 5.69 5.67 5.66 5.65 5.64 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.50 4.46 4.44 4.43 4.41 4.41 4.39 4.37 4.37
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.81 3.77 3.75 3.74 3.72 3.71 3.69 3.68 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.38 3.34 3.32 3.30 3.29 3.27 3.25 3.24 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 3.08 3.04 3.02 3.01 2.99 2.97 2.95 2.94 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 2.94 2.86 2.83 2.80 2.79 2.77 2.76 2.73 2.72 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.70 2.66 2.64 2.62 2.60 2.59 2.56 2.55 2.54
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.12 2.04 1.99 1.97 1.95 1.92 1.91 1.88 1.86 1.85
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 1.93 1.84 1.79 1.76 1.74 1.71 1.70 1.66 1.64 1.63
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.84 1.74 1.69 1.66 1.64 1.61 1.59 1.55 1.53 1.52
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.78 1.69 1.63 1.60 1.58 1.54 1.52 1.48 1.46 1.45
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.75 1.65 1.59 1.56 1.53 1.50 1.48 1.44 1.41 1.40
70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.02 1.97 1.72 1.62 1.57 1.53 1.50 1.47 1.45 1.40 1.37 1.36
80 3.96 3.11 2.72 2.49 2.33 2.21 2.13 2.06 2.00 1.95 1.70 1.60 1.54 1.51 1.48 1.45 1.43 1.38 1.35 1.34
90 3.95 3.10 2.71 2.47 2.32 2.20 2.11 2.04 1.99 1.94 1.69 1.59 1.53 1.49 1.46 1.43 1.41 1.36 1.33 1.31
100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.68 1.57 1.52 1.48 1.45 1.41 1.39 1.34 1.31 1.30
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.62 1.52 1.46 1.41 1.39 1.35 1.32 1.26 1.22 1.21
300 3.87 3.03 2.63 2.40 2.24 2.13 2.04 1.97 1.91 1.86 1.61 1.50 1.43 1.39 1.36 1.32 1.30 1.23 1.19 1.17
500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.59 1.48 1.42 1.38 1.35 1.30 1.28 1.21 1.16 1.14
1 000 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.58 1.47 1.41 1.36 1.33 1.29 1.26 1.19 1.13 1.11
2 000 3.85 3.00 2.61 2.38 2.22 2.10 2.01 1.94 1.88 1.84 1.58 1.46 1.40 1.36 1.32 1.28 1.25 1.18 1.12 1.09

Rapport avec la loi binomiale[modifier | modifier le code]

La densité de probabilité de la loi de Fisher a une forme similaire à celle de la loi binomiale :

\begin{align}
\text{Fisher : } f(x) = & \frac{\Gamma(d_1/2 + d_2/2)}{x \Gamma(d_1/2)\Gamma(d_2/2)} & \times
   & \left ( \frac{d_1 x}{d_1 x + d_2} \right )^{d_1/2} & \times
   & \left ( 1 - \frac{d_1 x}{d_1 x + d_2} \right )^{d_2/2} \\
\text{binomiale : } p(k) = & \frac{n !}{k ! (n-k) !} & \times
   & \mathrm{P}^k & \times
   & ( 1 - \mathrm{P})^{n - k} \\
\end{align}

en identifiant :

d1 = 2k
d2 = 2(n - k)
\mathrm{P} = \frac{d_1 x}{d_1 x + d_2}

On notera par ailleurs que la fonction gamma Γ prolonge la factorielle.

Voir aussi[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. (en) Milton Abramowitz (éditeur) et Irene A. Stegun (éditeur), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York, Dover Publications,‎ 1972 (ISBN 978-0-486-61272-0)
  2. NIST (2006). Engineering Statistics Handbook - F Distribution
  3. (en) Alexander Mood, Franklin A. Graybill et Duane C. Boes, Introduction to the Theory of Statistics, McGraw-Hill,‎ 1974, 3e éd. (ISBN 978-0-07-042864-5), p. 246-249

Liens externes[modifier | modifier le code]