Loi de Student

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur les redirections Pour le test statistique, voir Test t.
Loi t de Student
Image illustrative de l'article Loi de Student
Densité de probabilité (ou fonction de masse)

Image illustrative de l'article Loi de Student
Fonction de répartition

Paramètres k > 0 (degrés de liberté)
Support x \in \R
Densité de probabilité (fonction de masse) f_T(t)= \frac{1}{\sqrt{k\pi}}\frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})}\left(1+\frac{t^2}{k}\right)^{-\frac{k+1}{2}}
Fonction de répartition 1−γ = ƒ(tγk ), voir tableau en fin d'article
Espérance
Médiane 0
Mode 0
Variance
Asymétrie
Kurtosis normalisé

La loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ².

Il existe plusieurs "lois de Student" : t, F,... Sans autre précision, l'expression loi de Student se réfère à la loi t de Student.

Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ² à k degrés de liberté. Par définition la variable

T = \frac{Z}{\sqrt{U/k}}

suit une loi de Student à k degrés de liberté.

La densité de \scriptstyle\ T, notée \scriptstyle\ f_T, est donnée par :

f_T(t)=\frac{1}{\sqrt{k\pi}}\frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})}\left(1+\frac{t^2}{k}\right)^{-\frac{k+1}{2}}, pour k > 0.

où Γ est la fonction Gamma d'Euler.

La densité \scriptstyle\ f_T\ associée à la variable \scriptstyle\ T\ est symétrique, centrée sur 0, en forme de cloche.

Son espérance ne peut pas être définie pour k = 1, et est nulle pour k > 1.

Sa variance est infinie pour k ≤ 2 et vaut \frac{k}{k-2} pour k > 2.

Histoire[modifier | modifier le code]

Le calcul de la distribution de Student a été publié en 1908 par William Gosset pendant qu'il travaillait à la brasserie Guinness à Dublin. Il lui était interdit de publier sous son propre nom, c'est pour cette raison qu'il publia sous le pseudonyme de Student. Le test t et la théorie sont devenus célèbres grâce aux travaux de Ronald Fisher, qui a qualifié cette distribution de « distribution de Student ».

Comportement limite[modifier | modifier le code]

Lorsque k est grand, la loi de Student peut être approchée par la loi normale centrée réduite. Une manière simple de le démontrer est d'utiliser le lemme de Scheffé.

Application : intervalle de confiance associé à l’espérance d’une variable de loi normale de variance inconnue[modifier | modifier le code]

Ce chapitre présente une méthode pour déterminer l'intervalle de confiance de l'estimateur de l’espérance μ d’une loi normale dont la variance σ2 est inconnue.

Théorème — L'intervalle de confiance de  \mu au seuil de confiance \alpha est donné par :

 \left[\,\overline{x} - t_{1 - \alpha/2}^{n-1}\sqrt{\frac{S}{n}}, \overline{x} + t_{1 - \alpha/2}^{n-1}\sqrt{\frac{S}{n}}\,\right],

avec

\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i, l'estimateur de l'espérance.
S =  \tfrac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x}) ^2, l'estimateur non biaisé de la variance.
t_{\gamma}^{k} le quantile d’ordre γ de la loi de Student à k degrés de liberté (dont la définition exacte est donnée ci-dessus).

Distributions apparentées[modifier | modifier le code]

Tableau des valeurs du quantile[modifier | modifier le code]

Le tableau suivant fourni les valeurs de certains quantiles de la loi de Student pour différents degrés de liberté k. Pour chaque valeur de \alpha, le quantile donné est tel que la probabilité pour qu'une variable suivant une loi de Student à k degrés de liberté lui soit inférieur est de 1-\alpha. Ainsi, pour 1-\alpha=0,95 et k=7, si X suit une loi de Student à 7 degrés de liberté, on lit dans la table que P(X<1,895)=0,95. Pour un intervalle de pari bilatéral à 95%, on prendra le quantile à 97,5% : P(X\in[-2,365,2,365])=0,95.

\alpha 25 % 20 % 15 % 10 % 5 % 2,5 % 1 % 0,5 % 0,25 % 0,1 % 0,05 %
1-\alpha 75 % 80 % 85 % 90 % 95 % 97,5 % 99 % 99,5 % 99,75 % 99,9 % 99,95 %
k
1 1,000 1,376 1,963 3,078 6,314 12,71 31,82 63,66 127,3 318,3 636,6
2 0,816 1,061 1,386 1,886 2,920 4,303 6,965 9,925 14,09 22,33 31,60
3 0,765 0,978 1,250 1,638 2,353 3,182 4,541 5,841 7,453 10,21 12,92
4 0,741 0,941 1,190 1,533 2,132 2,776 3,747 4,604 5,598 7,173 8,610
5 0,727 0,920 1,156 1,476 2,015 2,571 3,365 4,032 4,773 5,893 6,869
6 0,718 0,906 1,134 1,440 1,943 2,447 3,143 3,707 4,317 5,208 5,959
7 0,711 0,896 1,119 1,415 1,895 2,365 2,998 3,499 4,029 4,785 5,408
8 0,706 0,889 1,108 1,397 1,860 2,306 2,896 3,355 3,833 4,501 5,041
9 0,703 0,883 1,100 1,383 1,833 2,262 2,821 3,250 3,690 4,297 4,781
10 0,700 0,879 1,093 1,372 1,812 2,228 2,764 3,169 3,581 4,144 4,587
11 0,697 0,876 1,088 1,363 1,796 2,201 2,718 3,106 3,497 4,025 4,437
12 0,695 0,873 1,083 1,356 1,782 2,179 2,681 3,055 3,428 3,930 4,318
13 0,694 0,870 1,079 1,350 1,771 2,160 2,650 3,012 3,372 3,852 4,221
14 0,692 0,868 1,076 1,345 1,761 2,145 2,624 2,977 3,326 3,787 4,140
15 0,691 0,866 1,074 1,341 1,753 2,131 2,602 2,947 3,286 3,733 4,073
16 0,690 0,865 1,071 1,337 1,746 2,120 2,583 2,921 3,252 3,686 4,015
17 0,689 0,863 1,069 1,333 1,740 2,110 2,567 2,898 3,222 3,646 3,965
18 0,688 0,862 1,067 1,330 1,734 2,101 2,552 2,878 3,197 3,610 3,922
19 0,688 0,861 1,066 1,328 1,729 2,093 2,539 2,861 3,174 3,579 3,883
20 0,687 0,860 1,064 1,325 1,725 2,086 2,528 2,845 3,153 3,552 3,850
21 0,686 0,859 1,063 1,323 1,721 2,080 2,518 2,831 3,135 3,527 3,819
22 0,686 0,858 1,061 1,321 1,717 2,074 2,508 2,819 3,119 3,505 3,792
23 0,685 0,858 1,060 1,319 1,714 2,069 2,500 2,807 3,104 3,485 3,767
24 0,685 0,857 1,059 1,318 1,711 2,064 2,492 2,797 3,091 3,467 3,745
25 0,684 0,856 1,058 1,316 1,708 2,060 2,485 2,787 3,078 3,450 3,725
26 0,684 0,856 1,058 1,315 1,706 2,056 2,479 2,779 3,067 3,435 3,707
27 0,684 0,855 1,057 1,314 1,703 2,052 2,473 2,771 3,057 3,421 3,690
28 0,683 0,855 1,056 1,313 1,701 2,048 2,467 2,763 3,047 3,408 3,674
29 0,683 0,854 1,055 1,311 1,699 2,045 2,462 2,756 3,038 3,396 3,659
30 0,683 0,854 1,055 1,310 1,697 2,042 2,457 2,750 3,030 3,385 3,646
40 0,681 0,851 1,050 1,303 1,684 2,021 2,423 2,704 2,971 3,307 3,551
50 0,679 0,849 1,047 1,299 1,676 2,009 2,403 2,678 2,937 3,261 3,496
60 0,679 0,848 1,045 1,296 1,671 2,000 2,390 2,660 2,915 3,232 3,460
80 0,678 0,846 1,043 1,292 1,664 1,990 2,374 2,639 2,887 3,195 3,416
100 0,677 0,845 1,042 1,290 1,660 1,984 2,364 2,626 2,871 3,174 3,390
120 0,677 0,845 1,041 1,289 1,658 1,980 2,358 2,617 2,860 3,160 3,373
\infty 0,674 0,842 1,036 1,282 1,645 1,960 2,326 2,576 2,807 3,090 3,291

Remarque : la dernière ligne du tableau ci-dessus correspond aux grandes valeurs de k. Il s’agit d’un cas limite pour lequel la loi de Student est équivalente à la loi normale centrée et réduite.

Articles connexes[modifier | modifier le code]

Sur les autres projets Wikimedia :