Logique

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Logicien)
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Logique (homonymie).
Gregor Reisch« La logique présente ses thèmes centraux », Margarita Philosophica, 1503/08 (?). Les deux chiens veritas et falsitas courent derrière le lièvre problema, la logique se presse armée de son épée syllogismus. En bas à gauche se trouve Parménide dans une grotte, grâce auquel la logique aurait été introduite dans la philosophie.

La logique (du grec logikê, dérivé de logos (λόγος), terme utilisé pour la première fois par Xénocrate[1] signifiant à la fois raison, langage, et raisonnement) est dans une première approche l'étude des règles formelles que doit respecter toute argumentation correcte.

Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature). Au Moyen Âge, elle ne figure pas explicitement parmi les sept arts libéraux (trivium : grammaire, dialectique et rhétorique ; quadrivium : arithmétique, géométrie, astronomie et musique). En outre, on a assisté depuis le XIXe siècle (Boole, Jevons) au développement fulgurant d'une approche mathématique de la logique. Sa convergence opérée avec l'informatique depuis la fin du XXe siècle lui a donné un regain de vitalité. Elle trouve depuis le XXe siècle de nombreuses applications en ingénierie, en linguistique, en psychologie cognitive, en philosophie analytique ou en communication.

La logique antique se décompose en dialectique, rhétorique, et théorie de la connaissance [Informations douteuses] [réf. nécessaire] (à rapprocher de l'épistémologie).

Histoire[modifier | modifier le code]

Article détaillé : Histoire de la logique.

Antiquité[modifier | modifier le code]

La logique est à l'origine la recherche de règles générales et formelles permettant de distinguer un raisonnement concluant de celui qui ne l'est pas. Elle trouve ses premiers tâtonnements dans les mathématiques et surtout dans la géométrie mais c'est principalement sous l'impulsion des Mégariques et ensuite d'Aristote qu'elle prit son envol.

La logique a très tôt été utilisée contre elle-même, c'est-à-dire contre les conditions mêmes du discours : le sophiste Gorgias l'utilise dans son Traité du non-être afin de prouver qu'il n'y a pas d'ontologie possible : « ce n'est pas l'être qui est l'objet de nos pensées ». La vérité matérielle de la logique est ainsi ruinée. Le langage acquiert ainsi sa propre loi, celle de la logique, indépendante de la réalité. Mais les sophistes ont été écartés de l'histoire de la philosophie (sophiste a pris un sens péjoratif), si bien que la logique, dans la compréhension qu'on en a eu par exemple au Moyen Âge, est restée soumise à la pensée de l'être.

Ère moderne[modifier | modifier le code]

Au XVIIe siècle Leibniz fit des recherches fondamentales en logique qui révolutionnèrent profondément la logique aristotélicienne même si Leibniz se réclama constamment de la tradition des syllogismes d'Aristote. Il fut le premier à imaginer et à développer une logique entièrement formelle.

Emmanuel Kant, quant à lui, définit la logique comme «une science qui expose dans le détail et prouve de manière stricte, uniquement les règles formelles de toute pensée». Les six œuvres d'Aristote regroupées sous le titre de Organon, où figurent notamment les catégories et l'étude du syllogisme, furent longtemps considérées comme la référence sur ce sujet. En 1847 sort Mathematical Analysis of Logic, puis An Investigation Into the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities en 1854. Boole y développe une nouvelle forme de logique, à la fois symbolique et mathématique. Le but : traduire des idées et des concepts en expressions et équations, leur appliquer certains calculs et retraduire le résultat en termes logiques. C'est le début de la logique moderne, fondée sur une structure algébrique et sémantique, que l'on appelle algèbre de Boole en son honneur. Suivit la naissance d'une logique formelle dépassant la structure binaire entre sujet et attribut à partir du XIXe siècle, ainsi Gottlob Frege et Russell remplacent-ils l'analyse prédicative par une distinction entre fonction et argument.

Les différentes approches[modifier | modifier le code]

De manière très générale il existe quatre approches de la logique :

L'approche mathématique a une position qui est un peu particulière d'un point de vue épistémologique, puisqu'elle est à la fois un outil de définition des mathématiques, et une branche de ces mêmes mathématiques, donc un objet.

Article détaillé : Logique mathématique.

Notions élémentaires de logique formelle[modifier | modifier le code]

Un langage logique est défini par une syntaxe, c'est-à-dire un système de symboles et de règles pour les combiner sous formes de formules. De plus, une sémantique est associée au langage. Elle permet de l'interpréter, c'est-à-dire d'attacher à ces formules ainsi qu'aux symboles une signification. Un système de déduction permet de raisonner en construisant des démonstrations.

La logique comprend classiquement :

Auxquelles s'ajoute :

Syntaxes[modifier | modifier le code]

La syntaxe de la logique des propositions est fondée sur des variables de propositions appelées également atomes que nous notons avec des lettres minuscules (p, q, r, s, etc.). Ces symboles représentent des propositions sur lesquelles on ne porte pas de jugement vis-à-vis de leur vérité : elles peuvent être soit vraies, soit fausses, mais on peut aussi ne rien vouloir dire sur leur statut. Ces variables sont combinées au moyen de connecteurs logiques qui sont, par exemple :

  1. le connecteur binaire disjonctif (ou), de symbole: ∨ ;
  2. le connecteur binaire conjonctif (et), de symbole: ∧ ;
  3. le connecteur binaire de l'implication, de symbole: → ;
  4. le connecteur unaire ou monadique de la négation (non), de symbole: ¬.

Ces variables forment alors des formules complexes.

La syntaxe de la logique du deuxième ordre, contrairement à celle du premier ordre, considère d'une part les termes qui représentent les objets étudiés, et d'autre part les formules qui sont des propriétés sur ces objets. Dans la suite nous noterons V l'ensemble des variables (x, y, z...), F l'ensemble des symboles de fonctions (f, g...) et P l'ensemble des symboles de prédicats (P, Q...). On dispose également d'une application dite d'arité m.

Qu'en est-il de la signification d'une formule ? C'est l'objet de la sémantique. Là encore, elle diffère selon le langage envisagé.

En logique traditionnelle (appelée aussi logique "classique" ou logique du "tiers exclus"), une formule est soit vraie soit fausse. Plus formellement, l'ensemble des valeurs de vérité est un ensemble B de deux booléens : le vrai et le faux. La signification des connecteurs est définie à l'aide de fonctions de booléens vers des booléens. Ces fonctions peuvent être représentées sous la forme de table de vérité.

La signification d'une formule dépend donc de la valeur de vérité de ses variables. On parle d'interprétation ou d'affectation. Toutefois, il est difficile, au sens de la complexité algorithmique, d'utiliser la sémantique pour décider si une formule est satisfaisante (ou non) voire valide (ou non). Il faudrait pour cela pouvoir énumérer toutes les interprétations. Leur nombre est exponentiel.

Une alternative à la sémantique consiste à examiner les preuves bien formées et à considérer leurs conclusions. Cela se fait dans un système de déduction. Un système de déduction est un couple (A, R), où A est un ensemble de formules appelées axiomes et R un ensemble de règles d'inférence, c'est-à-dire de relations entre des ensembles de formules (les prémisses) et des formules (la conclusion).

On appelle dérivation à partir d'un ensemble donné d'hypothèses une suite non vide de formules qui sont : soit des axiomes, soit des formules déduites des formules précédentes de la suite.

Une démonstration d'une formule \phi à partir d'un ensemble de formules \Gamma est une dérivation à partir de \Gamma dont la dernière formule est \phi.

Quantification[modifier | modifier le code]

Article détaillé : Calcul des prédicats.

On introduit essentiellement deux quantificateurs dans la logique moderne :

  • \exists (il existe au moins un), appelé quantificateur existentiel.
  • \forall (pour tout), appelé quantificateur universel.

Grâce à la négation, les quantificateurs existentiels et universels jouent des rôles duaux et donc, en logique classique, on peut fonder le calcul des prédicats sur un seul quantificateur.

Égalité[modifier | modifier le code]

Un prédicat binaire, que l'on appelle égalité, énonce le fait que deux termes sont égaux quand ils représentent le même objet. Il est géré par des axiomes ou schémas d'axiomes spécifiques. Cependant parmi les prédicats binaires c'est un prédicat très particulier, dont l'interprétation usuelle n'est pas seulement contrainte par ses propriétés énoncées par les axiomes : en particulier il n'y a usuellement qu'un prédicat d'égalité possible par modèle, celui qui correspond à l'interprétation attendue (l'identité). Son adjonction à la théorie préserve certaines bonnes propriétés comme le théorème de complétude du calcul des prédicats classique. On considère donc très souvent que l'égalité fait partie de la logique de base et l'on étudie alors le calcul des prédicats égalitaire.

Dans une théorie qui contient l'égalité, un quantificateur, qui peut être défini à partir des quantificateurs précédents et de l'égalité, est souvent introduit :

  • \exists! (il existe un et un seul).

D'autres quantificateurs peuvent être introduits en calcul des prédicats égalitaires (il existe au plus un objet vérifiant telle propriété, il existe deux objets ...), mais des quantificateurs utiles en mathématiques, comme « il existe une infinité ... » ou « il existe un nombre fini ... » ne peuvent s'y représenter et nécessitent d'autres axiomes (comme ceux de la théorie des ensembles).

Logique non binaire[modifier | modifier le code]

Il a fallu attendre le début du XXe siècle pour que le principe de bivalence soit clairement remis en question de plusieurs façons différentes :

  • La deuxième façon insiste sur le démontrable. Il y a donc ce qui est démontrable et le reste. Dans ce « reste », il peut y avoir des propositions réfutables, c'est-à-dire dont la négation est démontrable et des propositions au statut incertain, ni démontrable, ni réfutable. Cette approche, due en particulier à Gödel, est tout à fait compatible avec la logique classique bivalente, et on peut même dire que l'un des apports de la logique du XXe siècle est d'avoir analysé clairement la différence entre la démontrabilité et la validité, qui, elle, repose sur une interprétation en termes de valeurs de vérité. Mais la logique intuitionniste se fonde elle sur une interprétation des démonstrations, la sémantique de Heyting — ainsi une preuve de l'implication s'interprète par une fonction qui à une preuve de l'hypothèse associe une preuve de la conclusion, plutôt que sur une interprétation des énoncés par des valeurs de vérité. On a pu cependant après coup donner des sémantiques qui interprètent les énoncés, comme celle de Beth, ou celle de Kripke dans laquelle le concept de base est celui de monde possible. La logique intuitionniste est également utilisée pour analyser le caractère constructif des démonstrations en logique classique. La logique linéaire va encore plus loin dans l'analyse des démonstrations.
  • La quatrième façon, est celle de la logique modale qui par exemple atténue (possible) ou renforce (nécessaire) des propositions. Si Aristote s'intéresse déjà aux modalités, le XXe siècle, sous l'impulsion initiale de Clarence Irving Lewis, apporte une étude plus approfondie de celles-ci, et Saul Aaron Kripke donne une interprétation des énoncés des logiques modales utilisant des mondes possibles.

Annexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. Image de Platon et lectures de ses œuvres, 1997, Éditions Peeters, Jacques Follon, ISBN 2-87723-305-7
  2. voir (en)Logical Foundations of Artificial Intelligence

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Sur la philosophie :

Sur la logique mathématique :

Liens externes[modifier | modifier le code]