Test de primalité de Lucas-Lehmer pour les nombres de Mersenne

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Lucas, Lehmer, Test de Lucas et Test de primalité de Lucas-Lehmer.
Extrait de la p. 316 du mémoire Théorie des fonctions numériques simplement périodiques d'Édouard Lucas (1878).

En mathématiques, le test de Lucas-Lehmer est un test de primalité pour les nombres de Mersenne. Le test fut originellement développé par Édouard Lucas en 1878 et amélioré de façon notable par Derrick Henry Lehmer dans les années 1930, grâce à son étude des suites de Lucas[1],[2].

Théorème[modifier | modifier le code]

On définit par récurrence la suite d'entiers (si)i≥0 par[3] :

s_0=4\quad{\rm et}\quad\forall i\in\N\quad s_{i+1}=s_i^2-2.

Les premiers termes de cette suite sont 4, 14, 194, etc. (suite A003010 de l'OEIS).

Soit p un nombre premier impair. Le nombre de Mersenne Mp = 2p – 1 est premier si et seulement si sp – 2 est divisible par Mp[4].

Le nombre sp − 2 mod Mp est appelé le « résidu de Lucas-Lehmer » de p[5].

Notes et références[modifier | modifier le code]

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Lucas–Lehmer primality test » (voir la liste des auteurs) de 2004 (les deux articles ont évolué indépendamment depuis).

  1. (en) D. H. Lehmer, « An extended theory of Lucas' functions », Ann. Math., 2e série,‎ , p. 419-448 (JSTOR 1968235).
  2. (en) D. H. Lehmer, « On Lucas' test for the primality of Mersenne numbers », J. London Math. Soc., vol. 10,‎ , p. 162-165 (lire en ligne).
  3. Cette suite est décalée dans les articles originaux de Lehmer et dans (en) Chris Caldwell, « A proof of the Lucas-Lehmer Test », sur Prime Pages et (en) Benjamin Fine et Gerhard Rosenberger, Number Theory: An Introduction via the Distribution of Primes, Springer,‎ (lire en ligne), p. 226 : si = Si+1 avec S1 = 4 et Sk = Sk–12 – 2. La condition s'écrit alors : Sp – 1 est divisible par Mp.
  4. (en) Paulo Ribenboim, The Little Book of Bigger Primes, Springer,‎ , 2e éd. (ISBN 978-0-387-20169-6, lire en ligne), p. 77-78.
  5. (en) Eric W. Weisstein, « Lucas-Lehmer Test », MathWorld.

Article connexe[modifier | modifier le code]

Great Internet Mersenne Prime Search