n-uplet

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant les mathématiques
Cet article est une ébauche concernant les mathématiques.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

En mathématiques, si n est un entier naturel, alors un n-uplet ou n-uple est une collection ordonnée de n objets, appelés « composantes » ou « éléments » ou « termes » du n-uplet.

En programmation informatique, on trouve une notion équivalente dans certains langages, tels que Python, OCaml ou MDX. Dans les langages fonctionnels, les tuples sont réalisés comme types produits ; dans les langages impératifs, on trouve des tuples nommés, où les composantes sont repérées par un nom, sous la forme de struct (C) ou record (Pascal).

Note : l'utilisation du terme anglais tuple, abréviation de quin-tuple/sex-tuple/…, est courante dans des ouvrages de programmation en français[1].

Définitions[modifier | modifier le code]

Pour n > 0, si nous notons a1 le premier élément, a2 le deuxième élément, …, an le n-ième élément, le n-uplet s'écrit : (a1,a2,…,an).

Le 0-uplet s'écrit ().

L'égalité des n-uplets se définit par

(a1,a2,…,an) = (b1, b2,…,bn) si et seulement si a1 = b1 et a2 = b2 … et an = bn.

Un n-uplet d'éléments d'un ensemble E est un élément de sa n-ième puissance cartésienne En : un 1-uplet est un élément de E, un 2-uplet est un couple (ou doublet) et un 3-uplet est un triplet[2] ; un 4-uplet est un quadruplet, un 5-uplet est un quintuplet, etc.

Plus généralement, si E1, …, En, sont des ensembles, alors l'ensemble des n-uplets (a1,a2,…,an) où a1 appartient à E1, …, an appartient à En, est le produit cartésien de ceux-ci, noté E1 × … × En.

Exemples[modifier | modifier le code]

Formalisation[modifier | modifier le code]

D'après la définition par récurrence du produit cartésien de n ensembles, un n-uplet peut être défini à partir de la notion de couple, qui elle-même peut se définir en termes d'ensembles :

(a1, a2, … ,an) = ((… ((a1, a2), a3), … , an–1), an)

(c'est-à-dire qu'un (n + 1)-uplet est un couple dont la première composante est un n-uplet). Autrement dit :

  1. est un 0-uplet
  2. si x = (a1, a2, … ,an) est un n-uplet, alors (x,an+1) est un (n+1)-uplet, et (a1, a2, … ,an, an+1) = (x, an+1).

La propriété caractéristique des n-uplets (la définition de l'égalité) se démontre immédiatement par récurrence à partir de celle des couples.

On a choisi pour définir un n+1-uplet d'ajouter un élément « à la fin » d'un n-uplet : c'est arbitraire, et il est possible de commencer par le début, c'est-à-dire de définir un n+1-uplet comme un couple dont la seconde composante est un n-uplet. Ceci conduit à une définition différente mais qui a les mêmes propriétés.

Il est enfin possible de définir un n-uplet comme une suite finie, c'est-à-dire une fonction définie sur un ensemble fini, {0, …, n – 1} ou {1, …, n}.

Notes et références[modifier | modifier le code]

  1. Par exemple dans le manuel de F. Aprahamian, A Bertrand, D. Besancenot, J.-B. Ferrari et K. Huynh, Microéconomie, Bréal, 2007 (ISBN 9782749507491) , p. 226.
  2. J.-P. Escofier, Toute l'algèbre de la Licence, Dunod, , 3e éd. (lire en ligne), p. 30.

Article connexe[modifier | modifier le code]

Suite presque nulle