Loi de Davis

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Loi de Davis
Paramètres paramètre d'échelle
paramètre de forme
Paramètre de position
Support
Densité de probabilité (fonction de masse)
est la fonction Gamma et est la fonction zêta de Riemann
Espérance
Variance voir l'article

En théorie des probabilités et en statistique, la loi de Davis est une loi de probabilité continue. Son nom est issu de Harold T. Davis (1892–1974) qui introduisit[1] cette loi en 1941 comme modèle de revenus. Elle généralise la loi de Planck de radiation en physique statistique.

Définition[modifier | modifier le code]

La densité de probabilité de la loi de Davis est donnée par

est la fonction gamma et est la fonction zêta de Riemann. Ici , b, and n sont les paramètres de la loi, et n est un entier.

Propriétés[modifier | modifier le code]

La variance de la loi de Davis est :

Motivation[modifier | modifier le code]

Afin de pouvoir donner une expression qui représente plus précisément la traine de la loi des revenus, Davis utilisa un modèle approprié avec les propriétés suivantes[2] :

  • il existe tel que, ,
  • il y a un modèle de revenus,
  • pour x grand, le densité se comporte comme la distribution de Pareto :

Liens avec d'autres lois[modifier | modifier le code]

  • Si alors (loi de Planck)

Références[modifier | modifier le code]

  1. The Theory of Econometrics and Analysis of Economic Time Series
  2. Christian Kleiber, Statistical Size Distributions in Economics and Actuarial Sciences, Wiley Series in Probability and Statistics, [détail de l’édition] (ISBN 978-0471150640)