Loi Gamma
Loi Gamma | |
Densité de probabilité | |
Fonction de répartition | |
Paramètres | réel réel |
---|---|
Support | |
Densité de probabilité | |
Fonction de répartition | |
Espérance | |
Médiane | pas d'expression formelle |
Mode | pour |
Variance | |
Asymétrie | |
Kurtosis normalisé | |
Entropie | |
Fonction génératrice des moments | pour |
Fonction caractéristique | |
modifier |
En théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ² et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Les distributions Gamma sont utilisées pour modéliser une grande variété de phénomènes, et tout particulièrement les phénomènes se déroulant au cours du temps où par essence, le temps écoulé est une grandeur réelle positive ; c'est le cas par exemple dans l'analyse de survie.
Définition
[modifier | modifier le code]Paramétrage avec la forme k et l'échelle θ
[modifier | modifier le code]Soient k et θ deux réels strictement positifs. Une variable aléatoire X suit une loi Gamma de paramètres k et θ, ce que l'on note aussi (où Γ est la majuscule de la lettre grecque gamma) si sa fonction de densité de probabilité peut se mettre sous la forme :
,
pour tout x > 0. Dans l'expression ci-dessus, Γ désigne la fonction Gamma d'Euler. Le paramètre k s'appelle le paramètre de forme, et le paramètre θ est un paramètre d'échelle.
Paramétrage avec la forme α et l'intensité β
[modifier | modifier le code]Alternativement, la distribution Gamma peut être paramétrée à l'aide d'un paramètre de forme α = k et d'un paramètre d'intensité (rate parameter) :
.
Les deux paramétrages sont répandus, selon le contexte. On note la même notation et pour la loi pour les deux paramétrages. La notation est ambigüe, mais elle dépend du paramétrage choisi.
Propriétés
[modifier | modifier le code]Moyenne et variance
[modifier | modifier le code]La moyenne (espérance) d'une distribution gamma est le produit des paramètres de forme et d'échelle :
La variance est donnée par :
L'inverse de la racine carré du paramètre de forme donne le coefficient de variation :
- .
Coefficient d'asymétrie
[modifier | modifier le code]Le coefficient d'asymétrie d'une distribution gamma ne dépend que du paramètre de forme et vaut
Moments
[modifier | modifier le code]Pour tout n entier, le n-ième moment vaut :
- .
Somme
[modifier | modifier le code]Si chaque Xi suit la loi Γ(ki, θ) pour i = 1, 2,..., N, et si les variables aléatoires Xi sont indépendantes, alors :
.
Changement d'échelle
[modifier | modifier le code]Soit X une variable aléatoire qui suit une loi gamma de paramètres de forme k et d'échelle θ. Alors pour tout t > 0, la variable tX est distribuée selon une loi de paramètre de forme k et d'échelle tθ. Dit autrement pour le paramétrage (α, β), si X suit une loi gamma de paramètres de forme α et d'intensité β, alors tX est distribuée selon une loi de paramètre de forme et d'intensité β/t, que l'on note également .
Lien avec les autres distributions
[modifier | modifier le code]Contraintes sur les paramètres
[modifier | modifier le code]- Si , alors X a une distribution exponentielle de paramètre λ. En effet, pour , l'expression de la densité devient . Il s'agit bien de la densité de probabilité de la distribution exponentielle de paramètre λ.
- Si , alors X est identique à une variable qui suit χ2(ν), la loi du χ² avec ν degrés de liberté.
- Si k est un entier, la loi Gamma est une distribution d'Erlang.
- Si , alors X a une distribution de Maxwell-Boltzmann avec comme paramètre a.[Information douteuse]
Autres manipulations
[modifier | modifier le code]- Si X a une distribution Γ(k, θ), alors 1/X a une distribution loi gamma inverse, de paramètres k et θ−1.
- Si X et Y sont distribuées indépendamment selon des lois Γ(α, θ) et Γ(β, θ) respectivement, alors X / (X + Y) a une distribution beta de paramètres α et β.
- Si Xi sont distribuées selon des lois Γ(αi, θ) respectivement, alors le vecteur (X1 / S, ..., Xn / S), où S = X1 + ... + Xn, suit une distribution de Dirichlet de paramètres α1, ..., αn.
- Pour k grand, la distribution Gamma converge vers une loi normale, de moyenne et de variance . De plus, quels que soient k et θ, en fixant de cette manière les constantes et , les densités de probabilité de la distribution Gamma Γ(k, θ) et de la loi normale ont alors deux points d'inflexion aux mêmes abscisses, à savoir et .
Propriété de concentration
[modifier | modifier le code]Si , alors[1] pour tout , et .
Généralisation
[modifier | modifier le code]Une loi Gamma généralisée a été définie avec un troisième paramètre[2]: , afin de réunir dans une même famille la loi Gamma, la loi de Weibull et la loi exponentielle.
Références
[modifier | modifier le code]- (en) Nicolas Verzelen et Elisabeth Gassiat, « Adaptative estimation of high-dimensional signal to noise ratios », arXiv, , p. 41 (lire en ligne)
- (en) E. W. Stacy, « A Generalization of the Gamma Distribution », Ann. Math. Statist., vol. 33, no 3, , p. 1187-1192 (DOI 10.1214/aoms/1177704481)