Loi du cosinus surélevé

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Loi du cosinus surélevé
Image illustrative de l'article Loi du cosinus surélevé
Densité de probabilité (ou fonction de masse)

Image illustrative de l'article Loi du cosinus surélevé
Fonction de répartition

Paramètres

Support
Densité de probabilité (fonction de masse)
Fonction de répartition
Espérance
Médiane
Mode
Variance
Asymétrie
Kurtosis normalisé
Fonction génératrice des moments
Fonction caractéristique

En théorie des probabilités et en statistique, la loi du cosinus surélevé est une loi de probabilité continue définie à partir de la fonction cosinus. Elle dépend de deux paramètres : un réel qui est la moyenne et un paramètre positif décrivant la variance.

Lorsque et , la loi est appelée loi du cosinus surélevé standard.

Densité de probabilité[modifier | modifier le code]

La densité de probabilité de la loi du cosinus surélevé a pour support l'intervalle [] et est donnée par :

Fonction de répartition[modifier | modifier le code]

La fonction de répartition de la loi du cosinus surélevé est

Moments[modifier | modifier le code]

Les moments de la loi du cosinus surélevé sont plutôt compliqués, mais sont cependant beaucoup plus simple dans le cas de la loi du cosinus surélevé standard. Cette loi est la loi du cosinus surélevé pour les paramètres et . puisque la densité de probabilité de la loi du cosinus surélevé standard est une fonction paire, les moments d'ordre impair sont alors nuls. Les moments d'ordre pair sont donnés par :

est une fonction hypergéométrique généralisée.

Références[modifier | modifier le code]