Contagion

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

La contagion est la propagation de maladies infectieuses entre individus contemporains.

Par extension, peuvent également être appelés contagion les phénomènes de dispersion de virus informatique ou de viralité en communication.

Histoire[modifier | modifier le code]

Avant Pasteur, le phénomène de contagion était relativement connu (constaté), mais mal expliqué.

La contagiosité (appelé « contage » au début du XXe siècle) étant le potentiel de transmission d'une maladie d’individu à individu. En matière de gestion des risques, le pire des cas est celui d'un microbe hautement pathogène et très contagieux.

Types de contagion[modifier | modifier le code]

On peut la classer selon :

  • son type de transmission[1] :
    • directe : quand le microbe est transmis directement d'un sujet porteur (éventuellement porteur sain) à un sujet sain. Ce transfert se fait par contact (mains, baiser, rapports sexuels, échanges sanguins, etc) et/ou par l'air (via des bioaérosols (gouttelettes propulsées par éternuements, toux, postillons, ou émises par de simple expirations).
      Outre les états de santé de la personne infectée et de l'autre personne exposée en proximité, le risque de contagion varie selon leur distance et leurs postures respectives (vis-à-vis, contacts, ...), la durée d'exposition, et le contexte (turbulences et vitesses de l'air, exposition aux UV solaires, hygrométrie, etc.) : ces facteurs influent considérablement sur l'« efficacité » de la transmission aéroportée de microbes. À l'expiration, pour une personne debout ou assise, le flux respiratoire est généralement orienté vers le bas s'il est exprimé par les narines ou face au visage s'il est émis par la bouche. Les caractéristiques de ce flux dépendent aussi beaucoup de l'activité respiratoire[2],[3] et des modes respiratoires[4],[5],[6].
      La toux et les éternuements ont depuis des décennies suscité le plus de préoccupations et d'études et de mesures de protection (masques notamment) car ils induisent une vitesse expiratoire et un taux de gouttelettes plus élevées, propice à une contamination immédiate ; ce ne sont pourtant souvent que de brefs évènements, comparés à la fréquence des expirations normales ou même liées à la parole. Or on sait maintenant qu'un malade, par ses expirations normales, émet aussi des bioaérosols contaminants, plus encore quand il parle et encore plus s'il crie. L'inhalation a peu d'effets aérodynamiques sur le flux d'air d'une pièce[6] mais l'expiration par la bouche ou le nez génèrent des schémas de débit d'aérosols très variés, qui compliquent les modélisations[7],[3],[2],[8].
    • Directe et verticale : on parle de transmission verticale quand un pathogène ou une anomalie génétique est transmis d'un géniteur à l'enfant, soit avant la naissance via les cellules germinales du père ou de la mère, via le liquide spermatique ou via le placenta,le canal génital lors du le travail et de l'accouchement ; ou après la naissance (par contact étroit, par des gouttelettes, par l'allaitement post-partum, etc.)[9].
    • indirecte et/ou différée (via un vecteur tel qu'un objet (dits « fomite » dans la littérature scientifique), de l'eau, de la terre ou des poussières contaminées, des matières fécales, du sang, du vomi, un cadavre, un aliment contaminés, un insecte piqueur, ou encore des eaux de lavage, des instruments médicaux, etc.).
  • sa voie de transmission : peau, muqueuse, oeil, arbre respiratoire, tube digestif, lésion ;
  • son ampleur géographique : épidémie, endémie, pandémie ;
  • le type de maladie : zoonose, virose, bactérioses...

Données récentes sur la contagion par les bioaérosols[modifier | modifier le code]

microturbulences de l'air lors d'une toux dans la main ou dans un masque.
Microturbulences de l'air modifiés lors de la parole (Rem : parfois la pellicule d'air réchauffé par le corps protège la personne de l'incursion de flux d'expiration d'autres personnes[10]).

La plupart des maladies respiratoires infectieuses s'accompagnent de fièvre, de nez qui coule (rhinorrhée) et/ou de congestion voire d'obstruction nasale ou de remontées de glaires épaisses, voire de sang ou de pus, autant d'éléments sources de bioaérosols susceptible de contribuer à la contagion ; pour bien modéliser ces épidémies, il convient de notamment connaître le degré et la part de contagiosité dédiés par ces bioaérosols et leurs quantités.

Dans les années 1930-1940, à l'Université de Harvard, on invente des appareils destinés à quantifier la contamination de l'air par d'invisibles bactéries (notamment émises par la toux ou les éternuements)[11],[12]. On s'intéresse aux doses nécessaires et suffisantes pour une contamination[13], et en 1950, suite à de nombreuses expériences animales ayant utilisé des souris, rats, hamsters et cobayes il ne fait plus de doute que, par exemple, des aérosols de noyaux de gouttelettes fines contenant le bacille de la tuberculose bovine ou humaine sont contaminants[14].

Depuis les années 2000, les chercheurs savent mesurer, de plus en plus précisément, la quantité d'aérosols et de bioaérosols expirée par le nez ou la bouche d'un malade, dont lors d'une respiration « normale », ou par une personne qui parle[15]. On mesure aussi les classes de tailles des gouttelettes émises (tailles manométriques à micrométriques allant d'environ 1 μm à 500 μm)[16],[17],[18] (notamment entre 0,01 et 2.0 μm)[19]. Il est même possible de savoir de quelle partie de l'arbre respiratoire ou la cavité buccale proviennent les particules expectorées ou expirées[20]. On a ainsi montré que :

  • Plus l'air est sec, plus l'eau des nanogouttelettes émises dans l'expiration s'évapore rapidement, et même instantanément pour les gouttes de moins de 20 μm[28] (or si la toux ou l'éternuement éjectent des particules atteignant 500 μm[29], la plupart des gouttes expirées ont un diamètre inférieur à 5 à 10 μm)[17],[18],[30],[31],[32],[20],[33],[19],[34] ; dans l'air, il en reste alors des « noyaux de gouttelettes »[28] dans lesquels se trouvent des virus et bactéries provenant de l'arbre respiratoire et de la bouche d'où l'air a été expulsé, voire du système sanguin du patient si la maladie est hémorragique.
    Au dessous de 5 à 10 μm de diamètre (« taille de coupure »)[35],[36],[29],[37] il n'y a plus vraiment de gouttelette, mais un transfert aérien direct de nano-agrégats contentant notamment des virus ou bactéries. Par exemple, Lindsley et al. en 2010[38] ont dosé le virus grippal dans les « noyaux de gouttelettes » générés par la toux de personnes grippées : 42% des virus de la grippe A détectés l'ont été dans des noyaux de moins de 1 μm ; 23% dans des noyaux de 1-4 μm ; et 35% dans des noyaux de plus de 4 μm. Ces noyaux sont si légers qu'ils se comportent presque comme une molécule de gaz (au point que dans un environnement intérieur, le suivi d'un gaz traceur approprié (ex:N2O) permet de correctement prévoir où les noyaux de gouttelettes expirées circuleront)[39],[40] ; et ils peuvent persister longtemps, en suspension dans l'air tout en restant infectieux, et en étant véhiculés sur une longue distance par les flux d'air intérieurs. D'autres chercheurs ont récemment montré[10],[41],[42] que ces noyaux sont si légers que le léger mouvement convectif induit par la chaleur du corps humain[41] suffit à créer un « panache » ascendant susceptible d'apporter ou d'emporter des virus et bactéries[43],[44] (y compris dans une pièce où l'air est mélangé par la climatisation[45]) ; dans certaines configurations, la convection thermique induite par la chaleur du corps peut aussi fonctionner comme un rideau d'air protégeant la personne de l'incursion de flux d'expiration d'autres personnes[10].
    Rappel : dans un bioaérosol, de nombreux pathogènes survivent des heures ou des jours[46],[47],[48] et plus le noyau est petit, plus il pénétrera profondément les voies respiratoires inférieures s'il est inhalé[46],[29],[49],[50] ; c'est ainsi que de nombreux virus se dispersent pour éventuellement ensuite se recombiner dans leur hôte.
  • en 2004, il a été expérimentalement démontré (in vitro et in vivo) qu'il suffit de modifier la tension superficielle du fluide qui couvre la muqueuse de l'arbre respiratoires (en inhalant préalablement un aérosol (non toxique) de solution saline isotonique nébulisée) pour faire chuter le nombre de particules de bioaérosol expirées de 72% ± 8,% durant les 6 heures qui suivent[30].
  • en 2009, on précise que par rapport à une expiration normale, une expiration profonde (ample) génère 4 à 6 fois de nanoparticules et microgouttelettes dans le flux d'air expiré ; et le fait d'avoir rapidement inhalé, induit une une augmentation supplémentaire de 2 à 3 fois la concentration normale[51] ; alors qu'une expiration rapide mais peu profonde a eu peu d'effet sur la concentration de l'air expiré en aérosols[51]. On note aussi que, statistiquement, le taux d'aérosol respiratoire croît avec l'âge du sujet[51].
  • en 2015 on a montré qu'un médecin infecté risquait beaucoup moins de contaminer un patient si un simple petit ventilateur portable était positionné devant sa bouche (jusqu'à à 60 cm) et dirigé de sorte à déporter son air expiré dans la direction opposée[52].
  • en 2019-2020, on a précisé que la manière de parler et d'articuler influence fortement la quantité et le type de postillons et bioaérosols exhalés[53] ; en particulier plus la voix est forte ou criée plus on émet de bioaérosols[54].
    Et de manière générale le risque de transmission augmente quand le malade (qui peut être encore symptomatique) est debout plutôt qu'assis, et quand sa respiration est plus ample[55] et qu'il parle plus fort[15].
  • le type de ventilation/climatisation, la configuration des bouches d'alimentation et d'évacuation d'air[56], ainsi que le débit d'air sont des facteurs clés, qui modulent la distribution de l'air intérieur. Selon sa configuration, le flux d'air distribuera plus ou moins et plus ou moins loin les microbes issus de la toux et des éternuements (dans les bâtiments, dans la cabine d'un avion, l'habitacle d'une voiture, etc.)[57].

Ainsi, dans un hôpital, une ventilation bien conçue peut fortement diminuer le risque d'infection croisée par transmission aéroportée[58] (et il existe des cas particuliers comme celui d'une salle d'opération ou des cabinets et cliniques dentaires)[59].

Cependant, dans une même pièce, par rapport à une situation moyenne ; une modification du taux de renouvellement d'air, la place du donneur de microbe et du receveur, la manière dont l'air est distribué dans la pièce, un courant d'air, le déplacement d'une ou deux personnes dans une chambre de malade peuvent momentanément fortement changer le schéma (pattern) de dispersion des noyaux de gouttelettes infectieux expirées par la (les) personne(s) infectée(s), la distance de sécurité d'un mètre pouvant alors éventuellement ne plus être adéquate[60].

Concernant les aérosols viraux de SARS-CoV-2[modifier | modifier le code]

On sait que certains malades de la COVID-19 présentent durant plusieurs jours un titrage (taux) élevé de virus SARS-CoV-2 dans tout ou partie de leur arbre respiratoire[61] :

  • Selon une étude publiée par la revue des CDC Emerging Infectious Diseases, faite dans un service de réanimation de 15 patients de l'hôpital Huoshenshan (l'un des 16 hôpitaux-refuges construit pour lutter contre la COVID-19 à Wuhan) et dans un service de traitant 24 malades moins gravement touchés de l'hôpital construit en 10 jours, « Le SARS-CoV-2 était largement distribué dans l’air et sur la surface d’objets dans les services de réanimation et de soins généraux, ce qui implique un risque potentiellement élevé de contamination pour les personnels soignants et les autres contacts proches ». Sans surprise le service des soins intensifs est plus contaminé et en particulier (par ordre décroissant de contamination) les souris, les poubelles les lits et poignées de porte.
    Les auteurs ajoutent que « plus de 50% des semelles des chaussures de soignants portant des traces de virus ; il et souhaitable qu'elles soient désinfectées quand les agents de santé sortent du services consacré à la Covid-19 ».
    Le virus a aussi été trouvé en suspension dans l’air surtout près des lits de malades, et jusqu'à 4 mètres du malade ; de même que sur la bouche d’extraction d'air de la chambre, ce qui pose question pour « l’isolement de malades à domicile ». Des virions sont aussi émis en petite quantité sous forme d'aérosols par les malades qui parlent ou respirent (même sans tousser ni éternuer) mais au 10 avril 2020 on ignore encore dans quelle mesures ils participent à la contagion, car le test employé détecte l'ARN viral, mais sans pouvoir préciser si le virus a encore son pouvoir infectieux. Les auteurs conseillent aussi de désinfecter chaque masque après utilisation, et avant de le jeter.
  • le 15 avril 2020 dans la revue NEJM, 4 chercheurs américains (de l'Institut national du diabète et des maladies digestives et rénales) alertent sur le fait que parler suffit à émettre une quantité significative de virions, et notent que parler moins fort est associé à une moindre émission de gouttelettes aéroportées[62] (ils publient avec 3 vidéos le démontrant, basées sur l'illumination par laser de ces particules)[63].
  • le 13 mai 2020 la même équipe, dans PNAS[15], confirme que des virions émis par une personne parlant à voix haute, peuvent rester en suspension dans l'air d'un espace fermé pendant plus de 8 minutes à plusieurs dizaines de minutes ; conformément à la Loi de Stokes, plus les particules sont petites, plus elles restent longtemps en suspension dans l'air, alors que les plus lourdes retombent par gravité, au sol. Un laser traversant une enceinte fermée dans laquelle une personne parle permet de le vérifier. Lors de cette expérience, la personne répétait avec une voix plus ou moins forte durant 25 secondes « stay healthy » (c'est-à-dire « portez-vous bien » en anglais), expression choisie car le la phonation du « th » (dans le mot « healthy ») génère efficacement les gouttelettes dans le fluide expiré lors de la parole. Chaque microgouttelette étant illuminée quand elle traverse le plan balayé par le laser, il est possible d'évaluer le nombre de particules restant en suspension dans la boite au fil du temps[15]. Dans un air stagnant, des particules restent illuminées par le laser durant 8 à 14 min, ce qui les désigne comme des noyaux de gouttelettes d'environ 4 μm de diamètre, ou des microgouttelettes de 12 à 21 μm avant déshydratation.
    Au vu du titre (concentration) de virions de coronavirus mesurée dans la salive et le mucus oropharyngé, parler d’une voix forte durant une minute suffit à générer plus de 1000 microgouttelettes contaminantes dans l'air ; susceptibles d'y rester en suspension 8 minutes à plusieurs dizaines de minutes si le volume d'air n'est pas renouvelé et qu'il est stagnant[15]. La simple voix normale d’un malade (souvent asymptomatique dans le cas de la COVID-19) serait donc « éminemment capables de transmettre une maladie dans un espace confiné » confirment ces chercheurs[15]. Ce phénomène est l'une explication de la forte contagiosité de certains virus ciblant les muqueuses des voies pulmonaires ou aéro-digestives (grippe[64], tuberculose[23], rhume...).
    L'analyse des images indique que ce locuteur émettait, en moyenne, environ 2600 noyaux de gouttelettes par seconde de parole[15]. Au moment de cette expérience, on ignore encore quelle est la dose infectieuse minimale pour le SARS-CoV-2. Certains virus nécessitent d'être nombreux lors de l'inoculation afin qu'ils puissent déborder le système immunitaire, d'autres, au moins chez des hôtes « naïfs » (c'est-à-dire non-immunisés) peuvent induire une infection réussie à partir d'un ou quelques virions (les virologues parlent alors de virus à « action indépendante » (comprendre : indépendante du nombre de virus inoculés ; dans ce dernier cas chaque virion inoculé a une « probabilité théorique égale et non nulle de provoquer une infection »[15] ; c'est le cas par exemple pour le baculovirus quand il infecte un insecte[65] et de certains virus infectant des végétaux[66].
    Pour la COVID-19, la charge moyenne d'ARN viral du liquide buccal est estimée être d'environ 7 × 106 virions par millilitre (avec au maximum 2,35 × 109 copies du virus par millilitre)[67] ; en termes de probabilités selon Stadnytsky & al. (en mai 2020) : 37 % des gouttelette de 50 μm de diamètre (avant déshydratation) contiendraient au moins un virion. Mais seules 0,37% des gouttelettes de 10 μm en contiendraient (en réalité les virions émis peuvent aussi venir du fond de la gorge et des poumons). Pour une humidité relative de 27% à 23°C les gouttelettes se déshydratent en quelques secondes et les auteurs estiment « qu'une minute de parole forte génère au moins 1 000 noyaux de gouttelettes contenant des virions qui restent en suspension dans l'air durant plus de 8 minutes »[15]. Les auteurs précisent que pour les aérosols d'un diamètre de quelques microns, d'autres moyens de mesure, complémentaires, sont nécessaires (Morawska et al. avaient ainsi en 2009 ainsi compté jusqu'à 330 particules de 0,8 à 5,5 μm émises par seconde émises lors d'une vocalisation « aah » soutenue)[20].
    Le degré de contagiosité du virus constaté dans les hôpitaux, maisons de retraite et autres lieux de soins de santé, laisse pense que le SARS-CoV-2 est plutôt de type à « action indépendante », tout comme les virions de la grippe et la rougeole[15].

Sur les chantiers, dans les environnements bruyant ; face à des malentendants (personnes âgées..) ; dans une classe ou salle de conférence, etc., des personnes doivent parler fort. De même dans une chorale chante-t-on avec une certaine force, et plus encore pour un chanteur d'opéra. Les tests d'émissions de gouttelettes décrits ci-dessus semblent, à ce jour, toujours avoir été faits avec des locuteurs adultes non-chanteurs ; on ignore aussi quel serait l'équivalent avec les enfants ou adolescents criant, chantant ou « parlant » avec différents débits de parole et décibels, ou pour un groupe d'élève, au niveau moyen sonore d’un couloir ou d’une cour d’école ou d’un réfectoire ....ou pour des pleurs ou sanglots d'un bébé (atteint d'un rhume par exemple) ou dans le cas d'une chorale.

Des pratiques telles que le fitness en groupe surexposent au virus (par exemple : dans 12 installations sportives de danse fitness de Cheonan (Corée du Sud) en moins de semaines, 112 personnes ont été infectées)[68] ou des pratiques telles que chanter en chorale semble particulièrement à risque ; ... à titre d'exemples (analysés par médecin et vulgarisateur scientifique Marc Gozlan[69] :

  • Mi-mars 2020, dans une chorale du comté de Skagit (États-Unis), sur 61 choristes ayant (le 10 mars) participé à une répétition (qui a duré 2h30), 53 chanteurs (soit 87% du groupe, en admettant qu'il n'y ait pas eu de membres asymptomatiques non diagnostiqués) sont tombées malades dans les 4 à 19 jours qui ont suivi (parmi ces choristes tombés malades, deux sont morts)[70] ; l'enquête rétrospective faite par téléphone auprès de tous les choristes a montré qu’aucun d'entre eux n’était malade lors de la répétition précédente (du 3 mars). Suite à l'analyse de ce « cluster », dans dans leur bulletin épidémiologique hebdomadaire (MMWR) du 15 mai, les Centres pour le contrôle et la prévention des maladies (US-CDC) ont estimé que l'initiateur de ce foyer épidémique (le « cas index ») pourrait être un unique superinfecteurs, peut être moteur d'une souche particulièrement virulente car la plupart des cas secondaire sont apparus dans les 3 jours (contre 5 jours habituellement). Les CDC ont alerté sur le haut risque de contagion « lors d’une activité consistant à chanter à gorge déployée au milieu d’un groupe d’individus ». Le chef de chorale a limité la propagation en informant rapidement par mail tous les chanteurs après les premiers diagnostics (18 mars) et l'enquête a montré que la plupart des membres présents lors de la répétition se sont alors auto-isolées ou ont été placés en quarantaine[70]. Aux États-Unis, plus de 42 millions d’Américains (soit un sur huit) chantent dans l'une des 270 000 chœurs et chorales scolaires et universitaires, d'église d'entreprise ou d'autres communautés…
  • Début avril, dans la chorale du canton de Berlin, réunie dans la Cathédrale de Berlin pour chanter en groupe en dépit des conseil de distanciation physique, 60 personnes sur 80 sont tombées malades, a priori collectivement infectés le 9 mars lors d’une répétition qui s'est pourtant tenu dans un lieu vaste où l'air n'est pas confiné : le chœur de l'édifice[71] ; la Rhénanie du Nord-Westphalie a interdit « jusqu'à nouvel ordre » le chant choral, mais aussi la pratique groupée d'instruments à vent[71].
  • début mai, suite à un concert donné à Amsterdam (8 mars) parmi 130 choristes, 102 ont été diagnostiqués contaminés, certains ont dû être hospitalisés ; quatre personnes sont décédées de la Covid-19 dans ce contexte : un membre du chœur et trois personnes proches des choristes[72].

En France, mi mai, sur demande de Jean-Frédéric Poisson, président du Parti chrétien-démocrate et d'organisations catholiques traditionalistes, le Conseil d’État a cassé l'arrêté interdisant les rencontres religieuses dont les messes où les fidèles sont généralement amenés à chanter et prier vocalement ensemble. Le Conseil d’État demande à l’État de prendre des mesures, devant être «proportionnées aux risques sanitaires encourus» en ce « début de "déconfinement" ».

L’OMS confirme aussi ce fait (les nanoparticules se comportent plus comme des gaz que comme des particules)[réf. nécessaire].

  • Le 07 Juillet 2020, après qu'une lettre ouverte publiée dans la revue Oxford Clinical Infectious Diseases, cosignée par plus de 200 scientifiques, avaient exhorté l’OMS et la communauté médicale internationale à « reconnaître le potentiel de transmission aérienne du Covid-19 », l'OMS a reconnu qu'une transmission aérienne n'est pas à exclure, puis Joshua Santarpia et son équipe (à l'Université du Nebraska) ont confirmé que des particules virales expirées sous forme d'aérosols (dans leur étude, captées à 30 centimètres au-dessus des pieds de cinq malades alités dans leur chambre d'hôpital, dans des microgouttelettes de moins de 1 à cinq microns de diamètre, issues de l'expiration des malades) semblent bien capables se répliquer chez un autre individu et provoquer une infection. Pour 3 de 18 échantillons de gouttelettes d'un micron le virus a pu se reproduire in vitro. Selon la professeure Linsey Marr (spécialiste de la contamination virale par l'air), évoque à ce sujet "des preuves solides" « Il y a du virus infectieux dans l'air[73]. Reste à savoir quelle quantité il faut respirer pour être infecté »[73] (et combien de temps il reste infectieux en suspension dans l'air).

Importance de la contamination oculaire par le SARS-CoV-2[modifier | modifier le code]

L’œil est une porte d'entrée à ne pas sous-estimer pour le SARS-CoV-2[74] et à bien intégré dans les mesures barrière; Un article de Derek Chu & al., publié dans The Lancet, produit à partir de 172 études observationnelles et d'une compilation des preuves issues de 44 études comparatives sur le SRAS, le syndrome respiratoire du Moyen-Orient (MERS), COVID-19 et les bêtacoronavirus) insiste sur le fait que simplement porter une protection oculaire réduit de 78% le risque d'infection[75], sans que l'on ait à ce jour pu mesurer la part des infections directement issues de des gouttelettes ou aérosols contenant des virus et entrés directement en contact avec l’œil, et la part des « auto-inoculations » par frottement des yeux avec les doigts par exemple[76].

L'une des voie d'entrée possibles est le passage de gouttelettes aérosolisées dans les larmes, lesquelles transitent ensuite vers la sphère nasopharyngée via les canaux nasolacrymaux (puis éventuellement vers les voies respiratoires et/ou le cerveau)[77].

Notes et références[modifier | modifier le code]

  1. Sylvie Bazin-Tacchella, Danielle Quéruel, Évelyne Samama, Air, miasmes et contagion, D. Guéniot, , p. 124
  2. a et b Gupta JK, Lin C, Chen Q. Characterizing exhaled airflow from breathing and talking. Indoor Air. 2010; 20: 31-39.
  3. a et b Gupta JK, Lin CH, Chen Q. Flow dynamics and characterization of a cough. Indoor Air. 2009; 19: 517-525.
  4. Melikov AK. Human body micro-environment: The benefits of controlling airflow interaction. Build Environ. 2015; 91: 70-77
  5. Melikov AK. Breathing thermal manikins for indoor environment assessment: important characteristics and requirements. Eur J Appl Physiol. 2004; 92: 710-713.
  6. a et b Melikov AK, Kaczmarczyk J. Measurement and prediction of indoor air quality using a breathing thermal manikin. Indoor Air. 2007; 17: 50-59
  7. Villafruela JM, Olmedo I, San Jose JF. Influence of human breathing modes on airborne cross infection risk. Build Environ. 2016; 106: 340-351
  8. Xu C, Nielsen PV, Liu L, et al. Human exhalation characterization with the aid of schlieren imaging technique. Build Environ. 2017; 112: 190-199.
  9. Zhu H, Wang L, Fang C, et al. (2020) Clinical analysis of 10 neonates born to mothers with 2019‐nCoV pneumonia. Transl Pediatr.; 9: 51‐ 60
  10. a b et c Melikov AK (2015) Human body micro-environment : The benefits of controlling airflow interaction. Build Environ.; 91: 70-77.
  11. (en) W. F. Wells, « On air-borne infection », American Journal of Epidemiology, vol. 20, no 3,‎ , p. 611–618 (ISSN 1476-6256 et 0002-9262, DOI 10.1093/oxfordjournals.aje.a118097, lire en ligne, consulté le 19 mai 2020)
  12. (en) William Firth Wells, « On the mechanics of Droplet nucléiques infection », American Journal of Epidemiology, vol. 47, no 1,‎ , p. 1–10 (ISSN 1476-6256 et 0002-9262, DOI 10.1093/oxfordjournals.aje.a119176, lire en ligne, consulté le 19 mai 2020)
  13. (en) William Firth Wells, Herbert L. Ratcliffe et Cretyl Crumb, « On the mechanics of droplets nuclei infection », American Journal of Epidemiology, vol. 47, no 1,‎ , p. 11–28 (ISSN 1476-6256 et 0002-9262, DOI 10.1093/oxfordjournals.aje.a119179, lire en ligne, consulté le 19 mai 2020)
  14. (en) H. L. Ratcliffe, « Tuberculosis induced by droplet nucléiques infection », American Journal of Epidemiology, vol. 55, no 1,‎ , p. 36–48 (ISSN 1476-6256 et 0002-9262, DOI 10.1093/oxfordjournals.aje.a119504, lire en ligne, consulté le 19 mai 2020)
  15. a b c d e f g h i j et k (en) Valentyn Stadnytskyi, Christina E. Bax, Adriaan Bax et Philip Anfinrud, « The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission », Proceedings of the National Academy of Sciences,‎ , p. 202006874 (ISSN 0027-8424 et 1091-6490, DOI 10.1073/pnas.2006874117, lire en ligne, consulté le 19 mai 2020).
  16. (en) J. P. Duguid, « The size and the duration of air-carriage of respiratory droplets and droplet-nuclei », Epidemiology and Infection, vol. 44, no 6,‎ , p. 471–479 (ISSN 0950-2688 et 1469-4409, PMID 20475760, PMCID PMC2234804, DOI 10.1017/S0022172400019288, lire en ligne, consulté le 19 mai 2020)
  17. a et b Chao CYH, Wan MP, Morawska L, et al. (2009) Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J Aerosol Sci.; 40:122-133
  18. a et b Papineni RS & Rosenthal FS (1997) The size distribution of droplets in the exhaled breath of healthy human subjects. J Aerosol Med.; 10(2): 105-116 (résumé)
  19. a et b Holmgren H, Ljungstrom E, Almstrand AC & al. (2010)Size distribution of exhaled particles in the range from 0.01 to 2.0 μm | J Aerosol Sci. ; 41(5): 439-446 (résumé).
  20. a b et c L. Morawska, GR Johnson, ZD Ristovski et al., « Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities », J Aerosol Sci., vol. 40, no 1,‎ , p.256-269 (lire en ligne).
  21. Lloyd-Smith J.O, Schreiber S.J, Kopp P.E & Getz W.M (2005) Superspreading and the effect of individual variation on disease emergence. Nature, 438(7066), 355-359.
  22. Fabian P, McDevitt JJ, DeHaan WH, et al. Influenza virus in human exhaled breath: an observational study. PLoS One. 2008; 3(7): e2691.
  23. a et b (en) Kevin P. Fennelly, Edward C. Jones-López, Irene Ayakaka et Soyeon Kim, « Variability of Infectious Aerosols Produced during Coughing by Patients with Pulmonary Tuberculosis », American Journal of Respiratory and Critical Care Medicine, vol. 186, no 5,‎ , p. 450–457 (ISSN 1073-449X et 1535-4970, PMID 22798319, PMCID PMC3443801, DOI 10.1164/rccm.201203-0444OC, lire en ligne, consulté le 19 mai 2020).
  24. Fitzgerald D, Haas DW. (2005) Mycobacterium tuberculosis. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 6th edn. Philadelphia: Churchill Livingstone; 2005.
  25. (en) Lassi Liljeroos, Juha T. Huiskonen, Ari Ora et Petri Susi, « Electron cryotomography of measles virus reveals how matrix protein coats the ribonucleocapsid within intact virions », Proceedings of the National Academy of Sciences, vol. 108, no 44,‎ , p. 18085–18090 (ISSN 0027-8424 et 1091-6490, PMID 22025713, PMCID PMC3207687, DOI 10.1073/pnas.1105770108, lire en ligne, consulté le 19 mai 2020)
  26. Yu IT, Li Y, Wong TW, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004; 350: 1731-1739.
  27. Health, Welfare & Food Bureau, Government of the Hong Kong Special Administrative Region (HWFB-HK). SARS Bulletin (28 May 2003). Lire en ligne : http://www.info.gov.hk/info/sars/bulletin/bulletin0528e.pdf.
  28. a et b Nicas M, Nazaroff WW, Hubbard A (2005) Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J Occup Environ Hyg.; 2:143-154 (résumé)
  29. a b et c Gralton J, Tovey E, Mclaws ML & Rawlinson WD (2011) The role of particle size in aerosolized pathogen transmission : A review. J Infect.; 62: 1-13.
  30. a et b Edwards, D. A., Man, J. C., Brand, P., Katstra, J. P., Sommerer, K., Stone, H. A., ... & Scheuch, G. (2004). Inhaling to mitigate exhaled bioaerosols. Proceedings of the National Academy of Sciences, 101(50), 17383-17388.
  31. Fang M, Lau APS, Chan CK, et al. (2008) Aerodynamic properties of biohazardous aerosols in hospitals. Hong Kong Med J.; 14(1): 26-28 (résumé).
  32. Fabian P, McDevitt JJ, DeHaan WH, et al. (2008) Influenza virus in human exhaled breath: an observational study. PLoS One.; 3(7): e2691.
  33. Almstrand AC, Bake B, Ljungstrom E, et al. (2010) Effect of airway opening on production of exhaled particles. J Appl Physiol.; 108(3): 584-588.
  34. Haslbeck K, Schwarz K, Hohlfeld JM, et al. (2010) Submicron droplet formation in the human lung. J Aerosol Sci.; 41(5): 429-438 (résumé).
  35. Rem : la taille de coupure change selon le contexte, thermohygrométrique notamment
  36. Hodgson MJ, Miller SL, Li Y, et al. (2012) Airborne Infectious Diseases. ASHRAE Position Document, Atlanta, Georgia
  37. OMS (2014) Infection prevention and control of epidemic- and pandemic-prone acute respiratory diseases in health care | WHO Guideline|Lire en ligne: http://apps.who.int/iris/bitstream/10665/112656/1/9789241507134_eng.pdf
  38. Lindsley WG, Blachere FM, Thewlis RE, et al. (2010) Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One. 2010; 5(11): e15100.
  39. Ai, Z., Mak, C. M., Gao, N., & Niu, J. (2020) Tracer gas is a suitable surrogate of exhaled droplet nuclei for studying airborne transmission in the built environment. In Building Simulation (pp. 1-8), février. Tsinghua University Press (résumé).
  40. Bivolarova M, Ondráček J, Melikov A & Ždímal V (2017) A comparison between tracer gas and aerosol particles distribution indoors: The impact of ventilation rate, interaction of airflows, and presence of objects. Indoor Air, 27(6), 1201-1212.
  41. a et b Licina D, Pantelic J, Melikov A, et al. (2014) Experimental investigation of the human convective boundary layer in a quiescent indoor environment. Build Environ ; 75: 79-91.
  42. Laverge J, Spilak M, Novoselac A. (2014) Experimental assessment of the inhalation zone of standing, sitting and sleeping persons. Build Environ.; 82: 258-66.
  43. Rim D, Novoselac A. (2009) Transport of particulate and gaseous pollutants in the vicinity of a human body. Build Environ.; 44: 1840-1849.
  44. Licina D, Melikov A, Pantelic J, et al. (2015) Human convection flow in spaces with and without ventilation: personal exposure to floor-released particles and cough-released droplets. Indoor Air.; 25: 672-682
  45. Bivolarova, M. P., Ondráček, J., Ždímal, V., Melikov, A. K., & Bolashikov, Z. D. (2016) Exposure to aerosol and gaseous pollutants in a room ventilated with mixing air distribution. In 14th international conference on Indoor Air Quality and Climate (résumé).
  46. a et b Tellier R (2006) Review of aerosol transmission of influenza A virus. Emerg Infect Dis.; 12: 1657–1662.
  47. Loosli C, Lemon H, Robertson O & Appel E (1943) Experimental airborne influenza infection : 1. Influence of humidity on survival of virus in air. Proc Soc Exp Biol Med.; 53: 205-206.
  48. Lai MY, Cheng PK, Lim WW (2005) Survival of severe acute respiratory syndrome coronavirus. Clin Infect Dis.; 41: e67-71.
  49. Thomas RJ (2013) Particle size and pathogenicity in the respiratory tract. Virulence.; 4:847-858.
  50. Koullapis PG, Kassinos SC, Bivolarova MP, Melikov AK (2016) Particle deposition in a realistic geometry of the human conducting airways. J Biomech.; 49(11): 2201-2212.
  51. a b et c Johnson, G. R., & Morawska, L. (2009) The mechanism of breath aerosol formation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 22(3), 229-237.
  52. Bolashikov, Z. D., Barova, M., & Melikov, A. K. (2015). Wearable personal exhaust ventilation: Improved indoor air quality and reduced exposure to air exhaled from a sick doctor. Science and Technology for the Built Environment, 21(8), 1117-1125 (résumé).
  53. Asadi, S., Wexler, A. S., Cappa, C. D., Barreda, S., Bouvier, N. M., & Ristenpart, W. D. (2020) Effect of voicing and articulation manner on aerosol particle emission during human speech. PloS one, 15(1), e0227699.
  54. Asadi S, Wexler A.S, Cappa C.D, Barreda S, Bouvier N.M & Ristenpart W.D (2019) Aerosol emission and superemission during human speech increase with voice loudness. Scientific reports, 9(1), 1-10.
  55. Ai ZT, Hashimoto K & Melikov AK (2019) Influence of pulmonary ventilation rate and breathing cycle period on the risk of cross-infection. Indoor Air, 29: 993–1004 ({https://onlinelibrary.wiley.com/doi/abs/10.1111/ina.12589 résumé]).
  56. Ai Z.T, Huang T & Melikov A.K (2019) Airborne transmission of exhaled droplet nuclei between occupants in a room with horizontal air distribution. Building and Environment, 163, 106328 (résumé).
  57. Li Y, Leung GM, Tang JW, et al. Role of ventilation in airborne transmission of infectious agents in the built environment – a multidisciplinary systematic review. Indoor Air. 2007; 17: 2-18
  58. Cermak R, Melikov AK, Forejt L, Kovar O. (2006) Performance of personalized ventilation in conjunction with mixing and displacement ventilation. HVAC&R Res.; 12(2): 295-311.
  59. Zemouri C, Awad S.F, Volgenant C.M.C, Crielaard W, Laheij A.M.G.A & de Soet J.J (2020) Estimating the Transmission of Airborne Pathogens in Dental Clinics. Available at SSRN 3516144 (résumé).
  60. Ai Z, Hashimoto K & Melikov A.K (2019) Airborne transmission between room occupants during short‐term events: Measurement and evaluation. Indoor air, 29(4), 563-576 (résumé).
  61. (en) Jasper Fuk-Woo Chan, Cyril Chik-Yan Yip, Kelvin Kai-Wang To et Tommy Hing-Cheung Tang, « Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens », Journal of Clinical Microbiology, vol. 58, no 5,‎ , e00310–20, /jcm/58/5/JCM.00310–20.atom (ISSN 0095-1137 et 1098-660X, PMID 32132196, PMCID PMC7180250, DOI 10.1128/JCM.00310-20, lire en ligne, consulté le 19 mai 2020).
  62. (en) Philip Anfinrud, Valentyn Stadnytskyi, Christina E. Bax et Adriaan Bax, « Visualizing Speech-Generated Oral Fluid Droplets with Laser Light Scattering », New England Journal of Medicine,‎ , NEJMc2007800 (ISSN 0028-4793 et 1533-4406, DOI 10.1056/NEJMc2007800, lire en ligne, consulté le 19 mai 2020).
  63. (en) Valentyn Stadnytskyi, Philip Anfinrud, Christina E. Bax et Adriaan Bax, « The airborne lifetime of small speech droplets and their potential importance to SARS-CoV-2 transmission », Proceedings of the National Academy of Sciences,‎ (DOI 10.5281/ZENODO.3770559, lire en ligne, consulté le 19 mai 2020).
  64. (en) Jing Yan, Michael Grantham, Jovan Pantelic et P. Jacob Bueno de Mesquita, « Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community », Proceedings of the National Academy of Sciences, vol. 115, no 5,‎ , p. 1081–1086 (ISSN 0027-8424 et 1091-6490, PMID 29348203, PMCID PMC5798362, DOI 10.1073/pnas.1716561115, lire en ligne, consulté le 19 mai 2020).
  65. (en) Mark P. Zwart, Lia Hemerik, Jenny S. Cory et J. Arjan G.M. de Visser, « An experimental test of the independent action hypothesis in virus–insect pathosystems », Proceedings of the Royal Society B: Biological Sciences, vol. 276, no 1665,‎ , p. 2233–2242 (ISSN 0962-8452 et 1471-2954, PMID 19324752, PMCID PMC2677602, DOI 10.1098/rspb.2009.0064, lire en ligne, consulté le 19 mai 2020).
  66. (en) Mark P. Zwart, José-Antonio Daròs et Santiago F. Elena, « One Is Enough : In Vivo Effective Population Size Is Dose-Dependent for a Plant RNA Virus », PLoS Pathogens, vol. 7, no 7,‎ , e1002122 (ISSN 1553-7374, PMID 21750676, PMCID PMC3131263, DOI 10.1371/journal.ppat.1002122, lire en ligne, consulté le 19 mai 2020).
  67. (en) Roman Wölfel, Victor M. Corman, Wolfgang Guggemos et Michael Seilmaier, « Virological assessment of hospitalized patients with COVID-2019 », Nature,‎ (ISSN 0028-0836 et 1476-4687, DOI 10.1038/s41586-020-2196-x, lire en ligne, consulté le 19 mai 2020).
  68. « À New York, les chorales plus fortes que le coronavirus », sur La Croix, (ISSN 0242-6056, consulté le 19 mai 2020).
  69. « États-Unis : deux morts du Covid-19 parmi cinquante-deux personnes contaminées au sein d’une chorale », sur Réalités Biomédicales, (consulté le 19 mai 2020).
  70. a et b Lea Hamner, Polly Dubbel, Ian Capron et Andy Ross, « High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice — Skagit County, Washington, March 2020 », MMWR. Morbidity and Mortality Weekly Report, vol. 69, no 19,‎ , p. 606–610 (ISSN 0149-2195 et 1545-861X, DOI 10.15585/mmwr.mm6919e6, lire en ligne, consulté le 19 mai 2020).
  71. a et b (de) « Wie riskant ist Singen im Chor oder Gottesdienst? », sur www.domradio.de (consulté le 19 mai 2020).
  72. (de) « Wie gefährlich sind Chöre? », sur Thuner Tagblatt (consulté le 19 mai 2020).
  73. a et b « Une étude confirme le risque infectieux du Covid-19 dans l’air expiré », sur Santé Magazine, (consulté le 29 juillet 2020)
  74. Yun Zhang, « Inequalities between $\mid A\mid + \mid B\mid $ and $\mid A^{*} \mid + \mid B^{*} \mid$ », sur The Electronic Journal of Linear Algebra, (ISSN 1081-3810, DOI 10.13001/1081-3810.3878, consulté le 2 juin 2020), p. 561–565
  75. (en) Cheng-wei Lu et Xiu-fen Liu, « 2019-nCoV transmission through the ocular surface must not be ignored », sur The Lancet, (PMID 32035510, PMCID PMC7133551, DOI 10.1016/S0140-6736(20)30313-5, consulté le 2 juin 2020), e39
  76. (en) C Raina MacIntyre et Quanyi Wang, « Physical distancing, face masks, and eye protection for prevention of COVID-19 », sur The Lancet, (PMCID PMC7263820, DOI 10.1016/S0140-6736(20)31183-1, consulté le 2 juin 2020), S0140673620311831
  77. Lisette Scheer et Robert Hillsgrove, « Urgent and Emergent Eye Care Strategies to Protect Against COVID-19 », sur Federal Practitioner, (ISSN 1078-4497, PMID 32454575, PMCID 7241604, consulté le 2 juin 2020), p. 220–223

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]