Pentagone

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Pentagone (homonymie).

|||Sciences

Pentagone
Un pentagone concave quelconque et ses angles internes.
Un pentagone concave quelconque et ses angles internes.

Type Polygone
Arêtes 5
Sommets 5

En géométrie, un pentagone est un polygone à cinq sommets, donc cinq côtés et cinq diagonales.

Un pentagone est soit simple (convexe ou concave), soit croisé. Le pentagone régulier étoilé est le pentagramme.

Étymologie[modifier | modifier le code]

Le terme « pentagone » dérive du latin pentagonum de même sens, substantivation de l'adjectif pentagonus, lui-même emprunté au grec ancien, πεντάγωνος (pentágônos), « pentagonal », « qui a cinq angles, cinq côtés »[1],[2]. Le terme grec est lui-même construit à partir de πέντε (pénte), « cinq », et γωνία (gônía), « angle ».

Le terme grec apparaît dans le livre IV des Éléments d'Euclide, probablement écrit vers 300av. J.-C., qui traite des figures inscrites ou circonscrites, en particulier des polygones réguliers.

Généralités[modifier | modifier le code]

Pentagones quelconques[modifier | modifier le code]

La somme des angles internes d'un pentagone simple (dont les arêtes ne se croisent pas) est égale à 540°. Cette égalité n'est pas vérifiée si le pentagone n'est pas simple.

Pentagones inscriptibles[modifier | modifier le code]

Un pentagone inscriptible est un pentagone pour lequel existe un cercle circonscrit, passant par ses cinq sommets.

L'aire d'un pentagone inscriptible peut être exprimée comme la racine carrée de l'une des racines d'une équation du septième degré (en) dont les coefficients sont fonction des côtés[3],[4],[5].

Un pentagone inscrit dont les arêtes et l'aire sont des nombres rationnels est appelé pentagone de Robbins (en). Les longueurs de ses diagonales sont soit toutes rationnelles, soit toutes irrationnelles ; on conjecture qu'elles doivent être toutes rationnelles[6].

Deux pentagones réguliers[modifier | modifier le code]

Pentagramme inscrit dans un pentagone régulier convexe.
Pentagone obtenu en faisant un demi-nœud avec une feuille rectangulaire.

Un pentagone régulier est un pentagone dont les cinq côtés ont même longueur et dont les cinq angles internes ont même mesure. Il en existe deux types :

Les diagonales d'un pentagone régulier convexe de côté a forment un pentagramme de côté φ a, où φ est le nombre d'or.

Il est possible de construire les deux pentagones réguliers à la règle et au compas. De nombreuses méthodes existent, l'une d'elles étant déjà connue d'Euclide au 3e siècle av. J.-C..

Une méthode par pliage simple permet de construire un pentagone régulier : il suffit de prendre une bande de papier suffisamment longue, d'initier une boucle, d'y passer une extrémité et de serrer en ajustant.

Usages[modifier | modifier le code]

Graphes[modifier | modifier le code]

Le graphe complet K5 est souvent dessiné sous forme d'un pentagramme inscrit dans un pentagone régulier convexe. Ce graphe réprésente également la projection orthogonale des 5 arêtes et 10 sommets du pentachore, un polytope régulier convexe en dimension quatre.

Pavages[modifier | modifier le code]

Article détaillé : Pavage pentagonal.

Il n'est pas possible de paver le plan euclidien par des pentagones réguliers convexes. Il est en revanche possible de le paver par des pentagones quelconques. En 2015, on connait 15 types de pavages pentagonaux isoédraux (en), c'est-à-dire employant un même type de tuile. On ignore s'il en existe d'autres.

Polyèdres[modifier | modifier le code]

Il existe plusieurs polyèdres dont les faces sont des pentagones :

Références[modifier | modifier le code]

  1. Définitions lexicographiques et étymologiques de « pentagone » du Trésor de la langue française informatisé, sur le site du Centre national de ressources textuelles et lexicales.
  2. (en) « πεντάγωνος », Perseus Digital Library.
  3. (en) Eric W. Weisstein, « Cyclic Pentagon », MathWorld.
  4. (en) David P. Robbins, « Areas of Polygons Inscribed in a Circle », Discrete & Computational Geometry, vol. 12, no 1,‎ , p. 223-236 (DOI 10.1007/BF02574377).
  5. (en) David P. Robbins, « Areas of Polygons Inscribed in a Circle », American Mathematical Monthly, vol. 102, no 6,‎ , p. 523-530 (DOI 10.2307/2974766).
  6. (en) Ralph H. Buchholz et James A. MacDougall, « Cyclic polygons with rational sides and area », Journal of Number Theory, vol. 128, no 1,‎ , p. 17–48 (DOI 10.1016/j.jnt.2007.05.005).