Abu l-Wafa

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Arabic albayancalligraphy.svg Cette page contient des caractères arabes. En cas de problème, consultez Aide:Unicode ou testez votre navigateur.
Page d'aide sur l'homonymie Pour les articles homonymes, voir Wafa.
Abu l-Wafa

Abu l-Wafa ou Abu l-Wāfā’ ou Muhammad Aboûl-Wafâ, (en persan : محمد ابوالوفای بوزجانی), né en 940 à Bouzjan et mort en 998 à Bagdad était un astronome et mathématicien persan principalement connu pour ses apports en trigonométrie plane et en trigonométrie sphérique.

Biographie[modifier | modifier le code]

Né en 939 ou 940 à Buzjan dans la région de Khorosan, d'une grande famille de Taif, il étudie les mathématiques auprès de ses oncles.

En 959, il émigre à Bagdad où il restera jusqu'à sa mort pendant l'apogée de la dynastie abbasside. Sous le règne des Bouyides, `Adhud ad-Dawla et son fils Charaf ad-Dawla, Bagdad devient un important centre culturel. Introduit à la cour, Abu l-Wafa rejoint al-Quhi et al-Sijzi comme astronome.

Parallèlement à ses observations astronomiques, Abu l-Wafa s'intéresse à la géométrie, la trigonométrie, l'algèbre et correspond avec les autres scientifiques de son époque.

Contributions[modifier | modifier le code]

Astronomie[modifier | modifier le code]

Abu l-Wafa s'intéresse aux mouvements de la lune. Il observe en particulier, à Bagdad, l'éclipse de lune du 24 mai 997 concomitamment avec al-Biruni situé à Kath, permettant ainsi de préciser la différence de longitude entre les deux villes. Il corrige les tables lunaires de son époque mettant en évidence ce que Tycho Brahe appellera la troisième variation.

Trigonométrie[modifier | modifier le code]

Dans son livre La révision de l'Almageste (en allusion à l'Almageste de Ptolémée), il corrige et complète les tables trigonométriques de ses prédécesseurs notamment sur la tangente. On lui doit la notion de cercle trigonométrique, celles de sécante et cosécante. On lui attribue aussi la formule des sinus en trigonométrie sphérique

\frac{\sin(A)}{\sin(a)} = \frac{\sin(B)}{\sin(b)} = \frac{\sin(C)}{\sin(c)}

Géométrie[modifier | modifier le code]

Abu l-Wafa commente les œuvres d'Euclide, Diophante et al-Khwarizmi (ces commentaires ont disparu). Dans son livre Sur l'indispensable aux artisans en fait de construction, il développe des constructions approchées à la règle et au compas de polygones réguliers à cinq, sept ou neuf côtés. Il s'intéresse en particulier aux constructions réalisables avec un compas d'écartement constant. Il propose une construction de la parabole. Il propose des constructions mécaniques de trisections d'angles et de duplication du cube. Il s'intéresse au problème de la division d'un carré en somme de plusieurs carrés et propose une première solution à la trisection du carré[1]. Également démonstration du théorème de Pythagore[2], il utilisera cette preuve par dissection pour expliquer le théorème de Pythagore aux artisans[3].

Triangle équilatéral inscrit dans un carré

Il est connu pour une solution par construction géométrique du problème suivant. Soit ABCD un carré de centre O avec un point quelconque E sur le segment BC et F le point symétrique à E par rapport à la droite (AC). La question est : le triangle AEF peut-il être équilatéral ?

Pour résoudre ce problème, il faut d'abord prouver que F est sur le segment CD. La solution proposée par Abu l-Wafa est la suivante :

  1. Construire le cercle circonscrit à ABCD.
  2. Construire un second cercle, de centre C et passant par O.
  3. Dénoter les deux points auxquels ces cercles se coupent en U et V.
  4. On peut alors prouver que les droites (AU) et (AV) coupent le carré en deux points qui sont les points E et F recherchés.

Le livre d'Abu l-Wafa contient une centaine de constructions géométriques qui ont été comparées à celles de traités mathématiques de la Renaissance. La descendance de ce traité dans l'Europe latine est toujours débattue[4].

Arithmétique[modifier | modifier le code]

Dans son livre Ce qui est nécessaire en arithmétique pour les comptables et les hommes d'affaires, il développe des mathématiques en même temps théoriques (fraction, multiplication, division, mesures) et pratiques (calculs de taxes, unités de monnaies, paiement de traitements). Bien que connaissant la numération indienne, il ne l'utilise pas dans cet ouvrage adressé au grand public. Il développe cependant une théorie sur les nombres négatifs les associant à l'image d'une dette : 3 - 5 représentant par exemple une dette de 2. Il accepte de multiplier ces nombres négatifs par des positifs et de les incorporer dans des calculs.

Optique[modifier | modifier le code]

Abu l-Wafa s'intéresse aussi à l'optique et publie un livre sur les miroirs ardents, miroirs dont tous les rayons réfléchis convergent en un même point, permettant ainsi d'obtenir en ce point une chaleur suffisante pour enflammer un objet.

Écrits[modifier | modifier le code]

Abu l-Wafa a écrit de nombreux livres dont certains ont disparu :

  • Kitab fi ma yahtaj ilayh al-kuttab wa'l-ummal min 'ilm al-hisab (Ce qui est nécessaire en arithmétique pour les comptables et les hommes d'affaires) entre 961 et 976 ;
  • Kitab al-Handasa (Sur l'indispensable aux artisans en fait de construction) ;
  • Al-Kitab al-Kamil (Le livre complet), une révision de l'Almageste ;
  • une théorie sur la Lune (disparu) ;
  • El Wadih (des tables trigonométriques, disparu) ;
  • un traité sur les coniques (disparu) ;
  • Kitab al-maraya al-muhriqa (Livre sur les miroirs ardents).

Voir aussi[modifier | modifier le code]

Sources[modifier | modifier le code]

Références[modifier | modifier le code]

  1. Reza Sarhangi, Slavik Jablan (2006). Elementary Constructions of Persian Mosaics. Towson University and The Mathematical Institute. pages.towson.edu
  2. Alpay Özdural (1995). Omar Khayyam, Mathematicians, and “conversazioni” with Artisans. Journal of the Society of Architectural 'www.jstor.org)
  3. (en) Alpay Özdural, « Mathematics and Arts: Connections between Theory and Practice in the Medieval Islamic World », Historia Mathematica, vol. 27, no 2,‎ mai 2000, p. 171-201 (DOI 10.1006/hmat.1999.2274)
  4. Raynaud, D. (2012) Abū al-Wafāʾ Latinus? A Study of Method, Historia Mathematica 39-1: 34-83 (DOI 10.1016/j.hm.2011.09.001) PDF version