Propulsion nucléaire navale

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Le premier porte-avions à propulsion nucléaire au monde, l'USS Enterprise et le premier non-américain, le Charles de Gaulle Français, croisant en Méditerranée.

La propulsion nucléaire navale ou propulsion nucléaire maritime est un type de propulsion des navires, sous-marins et navires de surface, lesquels sont dans ce cas équipés d'un ou plusieurs réacteurs nucléaires produisant de la chaleur transformée en vapeur pour activer une turbine ou un ensemble électrique.

Histoire[modifier | modifier le code]

1re sortie en mer du Nautilus, 20 janvier 1955.

La technologie américaine fut la première à aboutir et fut partagée avec le Royaume-Uni. L'URSS et la France réalisèrent des développements séparés. L'Allemagne de l’Ouest et le Japon développèrent des prototypes uniques de cargo sans lendemain. Ce fut ensuite le tour de la Chine, puis récemment, de l'Inde, aidée par l'URSS.

Développements américains et premier sous-marin nucléaire (1955)[modifier | modifier le code]

La conception, le développement et la production de réacteurs nucléaires de propulsion navale débuta dans les années 1940 aux États-Unis sous la direction de l'amiral Hyman Rickover. Le premier réacteur de test fut démarré en 1953, et deux ans plus tard en 1955, le premier sous-marin à propulsion nucléaire, l'USS Nautilus (SSN-571), fut mis à la mer. Une grande partie des premiers développements sur les réacteurs navals furent réalisés au Naval Reactor Facility américain du Laboratoire national de l'Idaho.

Ceci marqua la transition des sous-marins entre les lents bâtiments sous-marins qui existaient jusqu'alors et les navires de guerre capables de maintenir une vitesse de croisière de 20/25 nœuds tout en restant sous l'eau pendant de nombreuses semaines.

Le succès du sous-marin USS Nautilus conduisit au développement parallèle d'une nouvelle classe de sous-marins américains, la classe Skate, équipée d'un seul réacteur, et un croiseur, le USS Long Beach (CGN-9), mis en service en 1961, équipé de deux réacteurs C1W qui fut le 1er bâtiment de guerre de surface à propulsion nucléaire au monde.

Il fut rejoint par le porte-avions USS Enterprise (CVN-65), équipé de huit réacteurs en 1960, mis en service à la fin de 1961 et encore en service jusqu'en 2013, avec lequel il forma la Task Force 1 qui était composée uniquement de navires à propulsion nucléaire pour l'opération Sea Orbit.

En 1962, l'US Navy comptait 26 sous-marins opérationnels et 30 en construction. L'énergie nucléaire avait dès lors révolutionné la marine américaine.

Aux États-Unis, après les sous-marins américains de la classe Skate, le développement de réacteurs continua et une série unique de modèles normalisés fut construite à la fois par Westinghouse et General Electric, un réacteur de chaque fabricant équipant chaque navire bi-réacteur.

Rolls Royce construisit des modèles similaires, puis la Royal Navy développa un modèle plus évolué, le PWR-2 (« Pressurized Water Reactor » 2, Réacteur à eau pressurisée).

Le plus petit submersible à propulsion nucléaire, le NR-1, fut construit à la fin des années 1960.

Depuis les années 2000, une nouvelle génération, le réacteur A1B est développé pour les porte-avions entrant en service à partir de 2015. Les cœurs de ses réacteurs nucléaires ont une durée de vie égale à celle du navire, ce qui évitera de les changer au cours de sa carrière.

Développements russes et premier navire de surface nucléaire, civil (1957)[modifier | modifier le code]

Article connexe : Réacteur ОК-650.

L'Union soviétique a détenu le leadership mondial pour le nombre de navires à propulsion nucléaire construits, à savoir quelque 250 sous-marins, cinq bâtiments de guerre de surface, dont plusieurs croiseurs lance-missiles et huit brise-glaces soit environ 900 réacteurs[1].

Le Lénine, brise-glace soviétique mis en service en 1957 fut à la fois le premier navire civil à propulsion nucléaire et le premier navire de surface à propulsion nucléaire.

Lancé en 1952 par Staline, le projet de sous-marins à propulsion nucléaire pour la marine soviétique déboucha sur la mise en service du sous-marin nucléaire d'attaque K 3, du projet 627, Classe November pour l'OTAN, qui navigua pour la première fois sur propulsion nucléaire en 1958 et fut mis en service en 1959[2]. Il fut suivi par le SNLE K-19, du projet 658, classe Hotel pour l'OTAN, mis en service en 1961 et tristement célèbre par ses nombreux accidents.

Les plus gros sous-marins nucléaires jamais construits sont les 25 000 tonnes russes de la classe Typhoon, mis en service à partir de 1981.

Développements français[modifier | modifier le code]

Le SNA Saphir (S602) français de la classe Rubis.

Ne disposant pas d'uranium enrichi, la France lança en 1955 un premier projet de sous-marin nucléaire à l'uranium naturel et à l'eau lourde, le Q 244. Elle dut l'abandonner en 1958 en raison de problèmes techniques insurmontables, une telle technologie n'ayant encore aujourd'hui jamais pu être mise au point au monde[3]. En 1959, tirant les leçons de cet échec, la France mit sur pied le programme destiné à contrôler l'ensemble de la conception et de la réalisation de sous-marins à propulsion nucléaire qui prit le nom de Cœlacanthe[4] en 1962. En 1964 un prototype fonctionna en piscine à Cadarache[5]. En 1971 fut lancé le Redoutable, premier SNLE français.

Le SNA Le Rubis, mis en service en 1983, et les autres de la même classe, sont les sous-marins nucléaires d'attaque les plus compacts au monde.

Le réacteur nucléaire naval[modifier | modifier le code]

Principe[modifier | modifier le code]

Les bâtiments à propulsion nucléaire utilisent un ou plusieurs réacteurs nucléaires. La chaleur produite est transmise à un fluide caloporteur utilisé pour générer de la vapeur d’eau actionnant :

  • des turbines couplées aux hélices de propulsion (propulsion à vapeur) ;
  • des turbines couplées à des alternateurs alimentant en énergie électrique tout le bâtiment, et éventuellement des moteurs électriques de propulsion (propulsion électrique).

Technologie[modifier | modifier le code]

Les réacteurs nucléaires navals sont majoritairement de type réacteur à eau pressurisée et diffèrent des réacteurs commerciaux produisant de l'électricité en cela que :

  • ils ont une plus grande densité de puissance dans un petit volume ; certains fonctionnent avec de l'uranium faiblement enrichi (nécessitant des ravitaillements en combustible fréquents), d'autres fonctionnent avec de l'uranium hautement enrichi (plus de 20 % d’uranium 235, de 21 à 45 % dans les sous-marins soviétiques, plus de 96 % dans les sous-marins américains[6]) et n'ont pas besoin d'être réapprovisionnés aussi souvent tout en étant plus silencieux en opération du fait de leur cœur plus petit[7]) ;
  • le combustible peut être soit de l'UO2 (dioxyde d'uranium) proche de celui utilisé dans les centrales civiles avec des enrichissements inférieurs à 20 % soit un alliage métallique zirconium-métal (environ 15 % U enrichi à 93 %, ou davantage d'uranium à moindre enrichissement) ;
  • la conception de ces réacteurs permet d'avoir un caisson résistant de réacteur compact tout en préservant la sécurité nucléaire.

Outre l'eau sous pression, deux autres filières de réacteurs au moins ont été historiquement mises en œuvre par les USA (filière Sodium) et la Russie (URSS) (filière Plomb-Bismuth) puis abandonnées. Les avantages qu'elles présentent en termes de performance (densité de puissance et énergie) ne contrebalancent pas la simplicité d'exploitation de la filière eau sous pression.

Élément de combustible pour le réacteur du cargo nucléaire NS Savannah. L'élément contient 4 groupes de 41 barres de combustible. L'uranium utilisé était enrichi entre 4,2 et 4,6 %.

La longue vie du cœur est obtenue par le relativement haut enrichissement de l'uranium et par l'incorporation d'un poison consommable dans le cœur qui s'appauvrit progressivement au fur et à mesure que les produits de fission et les actinides minoritaires s'accumulent, conduisant à une efficacité réduite du combustible. Les deux effets se compensent. L'une des difficultés techniques est la création d'un combustible qui tolérera la très grande quantité de dommages dus aux radiations. Il est connu qu'au cours de l'utilisation les propriétés du combustible nucléaire changent. Il est très possible que le combustible se rompe et que des bulles de gaz issues de la fission nucléaire se forment.

L'intégrité à long-terme du caisson résistant de réacteur est maintenue en installant un bouclier à neutrons interne (au contraire des premiers modèles de réacteurs à eau pressurisée civils soviétiques pour lesquels de la fragilisation se produit du fait du bombardement neutronique sur un caisson résistant de réacteur très étroit).

La puissance des réacteurs atteint jusqu'à 550 MW dans les sous-marins les plus gros et les navires de surfaces. Les sous-marins français de la classe Rubis ont un réacteur de 48 MW qui nécessite un réapprovisionnement en combustible tous les 7 ans[8].

Les marines de guerre russe, américaine et britannique utilisent une propulsion à turbine à vapeur, tandis que les marines française et chinoise utilisent les turbines pour générer l'électricité pour la propulsion (propulsion turbo-électrique). La plupart des sous-marins russes ainsi que la majorité des porte-avions américains depuis la classe du USS Enterprise (CVN-65) sont propulsés par deux réacteurs (bien que le USS Enterprise le soit par huit). Les sous-marins américains, britanniques, français et chinois ne sont propulsés que par un seul.

Le démantèlement des sous-marins à propulsion nucléaire est devenue une tâche majeure pour les marines américaine et russe. Après la dépose du combustible, la pratique américaine est de couper le compartiment de réacteur du navire pour l'enterrer peu profondément en tant que déchets à faible niveau de radioactivité. En Russie, les navires entiers, ou les compartiments de réacteur scellés, restent typiquement entreposés flottants, même si une installation terrestre pour l'entreposage à long terme de 150 compartiments de réacteur dans la baie de Sayda, dans le grand Nord, a désormais été mise en service, en juillet 2006.

Le Yamal, brise-glace à propulsion nucléaire russe.

Bénéfices de cette technologie[modifier | modifier le code]

Cette énergie apporte :

  • Une très grande autonomie permettant d’éviter en opérations la contrainte du ravitaillement en combustible (retour à un port ou ravitaillement à la mer).
  • Un espace accru pour la cargaison. Sur les porte-avions, l’espace libéré par l’absence de soute à combustible, permet de consacrer plus de volume au stockage du carburant et des munitions des aéronefs.
  • Une puissance considérable permettant par exemple d’accroître la vitesse de transit ou la force d'un brise-glace.
Le SNLE-NG Le Téméraire, de la force océanique stratégique française.
  • Pour les sous-marins, une propulsion totalement indépendante de l’atmosphère.
    • Alors que les sous-marins classiques sont contraints de remonter en surface (ou à l’immersion périscopique en utilisant un schnorchel) pour alimenter les moteurs diesel en air (oxygène) et, ainsi recharger leurs batteries électriques, après quelques dizaines d’heures de plongée aux moteurs électriques (quelques jours pour ceux dotés de propulsion AIP), les rendant ainsi détectables et vulnérables, les sous-marins à propulsion nucléaire peuvent rester plusieurs mois en plongée, préservant ainsi leur discrétion.
    • Ils peuvent également soutenir dans la durée des vitesses importantes en plongée qu’un sous-marin classique ne pourrait maintenir plus de quelques dizaines de minutes sans entièrement décharger ses batteries.
    • La propulsion nucléaire apporte donc aux sous-marins un avantage déterminant, au point que l’on peut qualifier les sous-marins classiques de simples submersibles.

Applications militaires et civiles[modifier | modifier le code]

Environ 400 navires à propulsion nucléaire ont été construits dans le monde, très majoritairement militaires, surtout des sous-marins, mais aussi des porte-avions et des croiseurs, et quelques navires civils (brise-glaces essentiellement).

Le NS Savannah américain.

Des cargos nucléaires ont également été expérimentés dans les années 1960 et 1970 mais leur exploitation ne s’est pas avérée rentable et ces expériences ont été abandonnées. Il s'agit de :

  • l’américain NS Savannah (mis en service en 1962, retiré en 1972),
  • l’allemand Otto Hahn (mis en service en 1968, transformé en propulsion diesel en 1979),
  • et le japonais Mutsu (mis en service en 1972 et retiré en 1992 puis transformé en propulsion classique).

Les coûts d’investissement et d’exploitation (formation d’équipages très qualifiés, charges salariales et frais d’assurance) de la propulsion nucléaire ne la rendent véritablement intéressante que pour un usage militaire et particulièrement pour les sous-marins, ainsi que pour les brise-glaces pour lesquels l'énergie nucléaire est une bonne réponse aux importants besoins de puissance conjugués aux difficultés de ravitaillement au milieu des glaces.

Le brise-glace à propulsion nucléaire russe NS 50 Let Pobedy (50 ans de la victoire) mis en service en 2007, est le plus gros brise-glaces du monde.

Il faut également prendre en compte les difficultés particulières d'accès aux ports liées à la propulsion nucléaire dont les navires sont assimilés à des navires transportant des matières dangereuses (les refus d'accès de l'Otto Hahn dans certains ports lui interdisaient de fait d’assurer le transport de marchandises sur les lignes les plus rentables), ainsi que l'hostilité de certaines opinions publiques, comme celle qui au Japon gêna le Mutsu.

Les seuls navires civils à propulsion nucléaire actuellement en service sont des navires russes, des brise-glaces (8 en 2006[9] ) ainsi que le Sevmorput, cargo-brise-glaces qui est depuis 2007 en cours de transformation pour devenir un navire de forages pétroliers.

Les réacteurs sur barge[modifier | modifier le code]

Dérivés directement de la technologie des réacteurs de propulsion navale, les réacteurs sur barge ont fait l'objet de plusieurs avant-projets dans les années 1970 tant aux USA (Westinghouse) que dans d'autres pays dont la France. C'est toutefois la Russie qui défriche la voie. Elle est bien avancée dans un projet de fabrication d'une centrale nucléaire flottante pour ses territoires du grand Est. Le modèle aura deux unités de 35 MW électriques basées sur des réacteurs KLT-40 utilisés pour les brise-glaces (avec un rechargement de combustible tous les quatre ans). Certains navires russes ont été utilisés pour fournir de l'électricité à usage domestique et industriel dans les villes du grand Est et de Sibérie.

Notes et références[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Liens externes[modifier | modifier le code]