Limite d'Oppenheimer-Volkoff

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En astrophysique, la limite d'Oppenheimer-Volkoff correspond à la masse maximale théorique que peut avoir une étoile à neutrons. Au-delà de cette valeur, l'objet s'effondre alors en trou noir. La valeur de cette masse limite est d'environ 1,5 à 3 masses solaires[1] et est à comparer avec la limite de Chandrasekhar pour les naines blanches. Cette limite est la valeur de la masse maximale du cœur de l'étoile.

La limite d'Oppenheimer-Volkoff doit son nom aux deux physiciens qui ont complété les travaux précédemment entrepris par le physicien Richard C. Tolman à ce sujet[2], J. Robert Oppenheimer et George M. Volkoff[3].

À l'instar des naines blanches, la masse d'une étoile à neutrons se calcule à l'aide de deux équations différentielles, l'une décrivant la pression, l'autre la densité en fonction du rayon de l'étoile. Cependant, le rayon d'une étoile à neutron est très proche de la limite d'occlusion gravitationnelle. Une étoile à neutrons est donc un astre dégénéré relativiste. Ces équations doivent tenir compte de la courbure de l'espace et s'obtiennent par la relativité générale.

La limite d'Oppenheimer-Volkoff n'est qu'une estimation car l'équation d'état, celle reliant la pression à la densité, n'est pas clairement connue. Il existe plusieurs modèles décrivant le structure interne d'une étoile à neutrons (étoile à hypérons, condensat de pions, de kaons, étoile à quark...). La valeur de 3 masses solaires correspond au cas le plus extrême, avec l'équation d'état la plus "rigide" possible, celle où la vitesse du son serait celle de la lumière. Néanmoins, l'observation a montré que la masse des étoiles à neutrons est très groupée à 1,35 +/- 0,04 masses solaires.

Notes et références[modifier | modifier le code]

Sources[modifier | modifier le code]