Trou noir de Schwarzschild

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Trou noir (homonymie).

En astrophysique, le trou noir de Schwarzschild[1] est, par définition, un trou noir :

Plus formellement, c'est le trou noir obtenu en résolvant l'équation d'Einstein de la relativité générale, pour une masse immobile, sphérique, qui ne tourne pas et sans charge électrique. La métrique satisfaisant à ces conditions est alors appelée la métrique de Schwarzschild.

Historique[modifier | modifier le code]

Le terme de trou noir "black hole" est inventé en 1967 par le physicien américain John Wheeler. Il avait déjà été imaginé au XVIIIe siècle par Laplace : « Un astre lumineux de même diamètre que la Terre, dont la densité serait deux cent cinquante fois plus grande que celle du Soleil, ne laisserait en vertu de son attraction, parvenir aucun de ses rayons jusqu’à nous ». Cette idée n’a rien à voir ni avec la relativité générale ni avec Schwarzschild puisque prévu par la mécanique newtonienne.

La métrique de Schwarzschild, de laquelle dérivent les solutions de l'équation d'Einstein qu'on identifie aux trous noirs de Schwarzschild, a été obtenue la première fois par Karl Schwarzschild peu après la publication de la théorie de la relativité générale par Albert Einstein en 1915.

Propriétés[modifier | modifier le code]

Le théorème de Birkhoff[modifier | modifier le code]

Un théorème remarquable dû à Birkhoff affirme que la métrique de Schwarzschild est l'unique solution aux équations d'Einstein dans le vide possédant la symétrie sphérique. Comme la métrique de Schwarzschild est également statique, ceci montre qu'en fait dans le vide toute solution sphérique est automatiquement statique[3].

Ce théorème a une conséquence importante :

Un trou noir de Schwarzschild dans le vide, n'étant pas soumis à une quelconque interaction, ne peut pas émettre d'onde gravitationnelle.

Le théorème de calvitie[modifier | modifier le code]

Le théorème de calvitie dit la chose suivante :

Un trou noir est entièrement décrit par trois paramètres essentiels, qui à eux seuls, permettent de retrouver tous les autres :
  • la masse
  • la charge électrique
  • sa rotation (son moment angulaire)

Lorsqu'une étoile s'effondre en un trou noir, les valeurs des paramètres cités au-dessus sont conservées. Ce qui veut dire qu'un trou noir de Schwarzschild, de masse M, de charge nulle et de moment angulaire nul est né à partir d'une étoile ayant un moment angulaire nul, de charge nulle et ayant la même masse.

La nécessité d'avoir une étoile de charge et de moment angulaire nuls font que, dans l'absolu, ce genre de trou noir est plus théorique qu'autre chose. Cependant, en pratique, ce modèle reste satisfaisant pour la plupart des trous noirs d'origine stellaire, la charge réelle d'un étoile étant faible et sa vitesse de rotation négligeable par rapport à la vitesse de la lumière.

Tous les autres paramètres que les trois cités au-dessus, comme la température, sa pression... disparaissent. On ne peut donc, à partir d'un trou noir dont on connaît masse, charge et moment angulaire, retrouver les autres paramètres de l'étoile génitrice.

Notes[modifier | modifier le code]

  1. Entrée « trou noir de Schwarzschild », dans Richard Taillet, Pascal Febvre et Loïc Villain, Dictionnaire de physique, Bruxelles, De Boeck Université, , XII-741 p. (ISBN 978-2-8041-0248-7, notice BnF no FRBNF42122945), p. 561, lire en ligne
  2. Éric Gourgoulhon, Relativité générale, Paris, Observatoire de Paris, universités Paris-VI, Paris-VII et Paris-XI, École normale supérieure, (lire en ligne [PDF]), p. 134
  3. Précisons toutefois que ce théorème s'applique uniquement dans un espace à quatre dimensions. Si l'espace-temps possède plus de dimensions alors il est possible de trouver des solutions sphériques et non statiques en général.

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

(en) Schwarzschild Black Hole sur le site scienceworld.wolfram.com