Base de Hilbert

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Une base de Hilbert (du nom de David Hilbert), ou encore base hilbertienne, est une généralisation aux espaces hilbertiens ou seulement préhilbertiens de la notion classique de base orthonormale en algèbre linéaire, pour les espaces euclidiens (ou hermitiens dans le cas complexe), lesquels sont de dimension finie.

Comme dans le cas des bases habituelles, il s'agit de pouvoir décomposer n'importe quel vecteur de l'espace en somme de vecteurs colinéaires à ceux de la famille choisie. Cependant dans le cas d'une base de Hilbert, on ne peut pas (généralement) écrire une égalité entre le vecteur décomposé et une combinaison linéaire finie des vecteurs de la base : on doit généralement se contenter d'une série dont les termes sont colinéaires aux vecteurs de la base, et convergeant vers le vecteur à décomposer (la notion de convergence d'une série a ici un sens car un espace de Hilbert est en particulier un espace vectoriel normé).

Définition[modifier | modifier le code]

Soit H un espace préhilbertien sur le corps K des nombres réels ou des complexes et F=(e_i)_{i\in I} une famille de vecteurs de H.

Définition —  On dit que F est une base de Hilbert (ou base hilbertienne) de H si :

  • F est une famille orthonormale de H, c'est-à-dire :
 \forall (i,j)\in I^2\quad i\ne j \Rightarrow \langle e_i \mid e_j\rangle = 0
 \forall i\in I\quad \langle e_i \mid e_i\rangle = \Vert e_i \Vert^2 = 1
 \forall x\in H,\ \exists (\lambda_i)_{i\in I}\quad\text{tel que}\quad \sum_{i\in I} \lambda_ie_i = x

La sommabilité de la famille de vecteurs iei) est celle associée à la norme sur H. La première condition (orthonormalité) garantit l'unicité de la famille de scalaires i), pour tout vecteur x[1].

Dans le cas où H est de dimension finie, cette définition coïncide avec celle de base orthonormale. Dans le cas d'un espace de dimension infinie, le terme de base orthonormale indique très généralement une base de Hilbert[2].

Approche intuitive[modifier | modifier le code]

Décomposition d'une fonction créneau sur la base de Hilbert des polynômes trigonométriques. Seuls les dix premiers vecteurs de la base sont utilisés, proposant ainsi une approximation.
Avec 50 termes, la décomposition de la fonction créneau sur la base de Hilbert devient plus précise.

Depuis le XVIIIe siècle, les mathématiciens ont tenté de résoudre certaines questions à l'aide de séries de fonctions. Leonhard Euler étudie le problème de la détermination de la somme des inverses des carrés d'entiers[3]. Une série de polynômes trigonométriques permet de résoudre cette épineuse question ouverte depuis presque un siècle[4]. Joseph Fourier utilise une approche similaire pour étudier l'équation de la chaleur[5].

Le XXe siècle voit une formalisation à la fois moderne générale et géométrique de l'approche. David Hilbert considère les fonctions utilisées comme des éléments d'un espace vectoriel de dimension infinie. Il est équipé du produit scalaire suivant, permettant de bénéficier des techniques de la géométrie euclidienne :

 \langle f, g\rangle = \int f(x)g(x){\rm d}x.

Un espace euclidien dispose de bases orthonormales, une généralisation du théorème de Pythagore permet simplement de calculer les coordonnées d'un vecteur dans une telle base (ei). Si x est un vecteur, alors :

x=\sum \langle e_i,x\rangle e_i.

Il est tentant de vouloir généraliser ce résultat sur un espace de dimension infinie. Si l'espace fonctionnel dispose de bonnes propriétés une telle approche est possible. C'est le cas si l'espace est séparable, c'est-à-dire s'il existe une famille dénombrable dense, c'est-à-dire qui permet d'approcher aussi précisément que souhaité tout vecteur. Cette situation est analogue à celles des nombres réels. À une distance arbitrairement petite de tout réel se trouve un nombre rationnel. Le théorème de Stone-Weierstrass montre que tel est le cas sur de très nombreux espaces fonctionnels.

David Hilbert s'est intéressé à une autre propriété : la complétude. À l'image de la situation pour les nombres réels, toute suite de Cauchy converge dans un tel espace. La difficulté réside alors dans la signification à donner à une série contenant à priori un ensemble de termes qui n'a plus aucune raison d'être dénombrable si l'hypothèse de la séparabilité n'est plus remplie. Deux remarques permettent de résoudre cette question. L'ensemble des termes non nuls est toujours au plus dénombrable. De plus, la convergence de la série est absolue, garantissant ainsi que l'ordre dans lequel les éléments sont pris n'a aucune conséquence sur la limite de la série.

Propriétés[modifier | modifier le code]

Inégalité de Bessel et coefficients de Fourier[modifier | modifier le code]

Article détaillé : inégalité de Bessel.

Une première majoration joue un rôle important pour établir les propriétés d'une base de Hilbert. Elle porte le nom d'inégalité de Bessel.

Inégalité de Bessel —  Soient E un sous-espace vectoriel fermé de H, {}^{(f_i)_{i\in I}} une base de Hilbert de E et x un élément de H. Alors l'ensemble des indices i pour lesquels \langle x,f_i\rangle\ne 0 est au plus dénombrable, et la série suivante est convergente et majorée par le carré de la norme de x :

\sum_{i\in I} |\langle x,f_i\rangle |^2 \le \|x\|^2~.

L'égalité n'a lieu que si x est élément de E .

Le cas d'égalité est toujours vérifié si E est égal à H, il prend le nom d'égalité de Parseval. C'est une généralisation du théorème de Pythagore, utilisée dans le cadre des séries de Fourier.

La démonstration de l'inégalité de Bessel contient la propriété suivante :

Proposition — Une famille orthonormale de H est une base de Hilbert si et seulement si elle est totale, c'est-à-dire si le sous-espace vectoriel qu'elle engendre est dense dans H.

Ainsi une base de Hilbert de H n'est pas une base au sens algébrique du terme, mais une base orthonormale d'un sous-espace D dont l'adhérence est égale à H.

L'égalité de Parseval permet de déterminer l'expression d'un élément x dans une base hilbertienne (ei) de H :

Théorème et définition —  Si (ei) est une base hilbertienne de H, l'égalité suivante est vérifiée :

x= \sum_{i\in I} \langle x,e_i\rangle e_i.

Les coefficients \langle x,e_i\rangle sont appelés coefficients de Fourier de x, et constituent l'unique famille de coefficients permettant d'exprimer x dans la base de Hilbert.

Ainsi, à l'image de la situation pour une base au sens algébrique, il existe une et une unique manière d'exprimer un vecteur dans une base de Hilbert, mais en général comme une série et non plus une somme finie.

Dimension hilbertienne[modifier | modifier le code]

On peut définir la dimension hilbertienne d'un espace préhilbertien comme le cardinal de toute partie orthonormale maximale pour l'inclusion[6]. En effet, le lemme de Zorn garantit l'existence de telles parties, et elles ont toutes même cardinal d'après le théorème suivant :

Théorème — Dans l'espace préhilbertien H, si B est une partie orthonormale maximale, alors le cardinal de toute partie orthonormale est majoré par celui de B.

Cependant, cette notion n'est pas très utile dans le cadre général des espaces préhilbertiens. En effet, toute base hilbertienne de H est évidemment orthonormale maximale mais la réciproque est fausse (H peut même — cf. contre-exemple ci-dessous — posséder un sous-espace dense de dimension hilbertienne différente donc sans base hilbertienne). Elle est vraie cependant si H est complet, ce qui garantit l'existence de bases hilbertiennes pour les espaces de Hilbert et permet de classifier ceux-ci à isomorphisme près par leur dimension hilbertienne :

Proposition — Dans un espace de Hilbert, une partie est orthonormale maximale (si et) seulement si c'est une base hilbertienne.

Existence[modifier | modifier le code]

Sans l'hypothèse de complétude, l'existence d'une base hilbertienne n'est pas garantie. Cependant :

Théorème —  Tout espace préhilbertien séparable possède une base hilbertienne.

Exemples[modifier | modifier le code]

Espace de suites[modifier | modifier le code]

Article détaillé : Espace de suites ℓp.

Dans l'espace de Hilbert ℓ2(ℕ), la base hilbertienne canonique est la famille (δn)n∈ℕ. Plus généralement, dans ℓ2(X) où X est un ensemble quelconque, la base hilbertienne canonique est (δx)xX, où l'élément δx de ℓ2(X) est défini par : δx(x) = 1 et tous les autres δx(y) sont nuls. (Si X est fini, c'est la base orthonormale canonique de l'espace euclidien ou hermitien correspondant.)


Voici deux autres exemples de bases hilbertiennes, cette fois pour L2([0,1]) (que l'on peut facilement transformer en bases hilbertiennes de L2([a,b]) pour un intervalle [a,b] arbitraire, par changement de variable).

Système trigonométrique[modifier | modifier le code]

Article détaillé : série de Fourier.

L'exemple classique de base de Hilbert (et même l'origine du concept) est l'ensemble des fonctions trigonométriques

\{x\mapsto\sqrt2\cos(2\pi nx)~|~n\in\N\}\cup\{x\mapsto\sqrt2\sin(2\pi nx)~|~n\in\N^*\} .

Ces fonctions ne forment pas une base au sens algébrique, car elles ne constituent pas une famille génératrice de L2([0,1]). Plus précisément, elles forment une base du sous-espace des polynômes trigonométriques.

Le fait que cette famille soit totale est connu sous le nom de théorème de Riesz-Fischer.

Système de Haar[modifier | modifier le code]

La famille d'ondelettes de Haar (ψn,k), indexée par n et k, entiers naturels tels que k < 2n, forme également une base de Hilbert de L2([0,1]). Ces fonctions sont définies à partir de l'ondelette mère ψ donnée par

\psi(x)=\left\{\begin{array}{ll}
1&\textrm{si}\quad0\le x<\frac12,\\
-1&\textrm{si}\quad\frac12\le x<1,\\
0&\textrm{sinon,}\\ 
\end{array}\right.

en posant

\psi_{n,k}(x)=2^{n/2}\psi(2^n x-k)~ .

Notes et références[modifier | modifier le code]

  1. Toute base de Hilbert dénombrable est donc une base de Schauder.
  2. Voir par exemple S. Lang, Analyse réelle, Paris, InterEditions, 1977 (ISBN 978-2-72960059-4), p. 150.
  3. L. Euler, Démonstration de la somme de cette suite 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + etc, Journal lit. d'Allemagne, de Suisse et du Nord 2, 1743, p. 115-127.
  4. Pour plus de détails voir : (en) Euler’s Solution of the Basel Problem – The Longer Story par E. Sandifer de l'université de New York.
  5. J. Fourier, Théorie analytique de la chaleur, Paris, Firmin Didot Père et Fils, 1822, rééd. Jacques Gabay, 1988 (ISBN 2-87647-046-2).
  6. a et b (en) Paul R. Halmos, A Hilbert Space Problem Book, Springer, coll. « GTM » (no 19),‎ 1982, 2e éd. (ISBN 978-0-38790685-0, lire en ligne), p. 30.
  7. (en) Shmuel Kantorovitz, Introduction to Modern Analysis, OUP,‎ 2003 (ISBN 978-0-19152355-7, lire en ligne), p. 112.
  8. Corina Reischer, Marcel Lambert et Walter Hengartner, Introduction à l'analyse fonctionnelle, PUQ,‎ 1981 (ISBN 978-2-76052026-4, lire en ligne), p. 222.

Voir aussi[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

Liens externes[modifier | modifier le code]