Centrale nucléaire de Fukushima Daiichi

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Centrale nucléaire de Fukushima Daiichi
Image illustrative de l'article Centrale nucléaire de Fukushima Daiichi
Centrale nucléaire de Fukushima-Daiichi
福島第一原子力発電所
(ou Fukushima I)
Administration
Pays Drapeau du Japon Japon
bourg Okuma, Préfecture de Fukushima
bourg Futaba, Préfecture de Fukushima
Coordonnées 37° 25′ 17″ N 141° 02′ 01″ E / 37.4214, 141.0336 ()37° 25′ 17″ Nord 141° 02′ 01″ Est / 37.4214, 141.0336 ()  
Opérateur TEPCO
Date de mise en service De 1970 à 1979
Statut Définitivement hors d'usage pour les tranches 1 à 4

[1], [2],à la suite du tremblement de terre et au tsunami du 11 mars 2011.

Réacteurs
Fournisseurs General Electric (3), Toshiba (2), Hitachi (1)
Type À eau bouillante
Réacteurs actifs 0 (à la suite du tremblement de terre de 2011)
Puissance nominale de 439 à 1 067 MWe selon les réacteurs
Production d’électricité
Divers
Source froide Océan Pacifique

Géolocalisation sur la carte : préfecture de Fukushima

(Voir situation sur carte : préfecture de Fukushima)
Centrale nucléaire de Fukushima Daiichi

Géolocalisation sur la carte : Japon

(Voir situation sur carte : Japon)
Centrale nucléaire de Fukushima Daiichi

La centrale nucléaire de Fukushima-Daiichi (福島第一原子力発電所, Fukushima Dai-ichi Genshiryoku Hatsudensho?), aussi dénommée centrale nucléaire de Fukushima I [3], est l'une des 25 plus grandes centrales nucléaires au monde.

Elle est située sur le territoire des bourgs d'Okuma (tranches 1 à 4) et de Futaba (tranches 5 et 6), dans la préfecture de Fukushima, au bord de l'océan Pacifique, sur la côte est de l'île de Honshū (la principale île du Japon), à environ 250 km au nord de Tokyo, 45 km au nord de Iwaki, 45 km au sud de Sōma.

Il s'agit de la première centrale japonaise à avoir été entièrement construite et exploitée par TEPCO[4], qui exploite également la centrale nucléaire de Fukushima Daini, située 12 kilomètres plus au sud.

Depuis l'accident nucléaire de Fukushima à la suite du tremblement de terre et du tsunami du 11 mars 2011, la centrale est à l'arrêt. Des équipes spéciales procèdent à des réparations et des décontaminations des zones les plus exposées à la radioactivité. Selon un comité d'experts mandaté par le gouvernement du Japon, la centrale nucléaire de Fukushima Daiichi ne pourrait, en toute sécurité, pas être fermée avant 2040[5].

Article détaillé : accident nucléaire de Fukushima.

Description[modifier | modifier le code]

Vue aérienne de la centrale de Fukushima-Daiichi

La centrale Fukushima I (Daiichi)[Note 1] a été construite et est exploitée par Tokyo Electric Power Company (TEPCO), une des dix compagnies d'électricité du Japon. Elle est située au nord-est du Japon, dans la préfecture de Fukushima, au bord de l'océan Pacifique, sur la côte est de l'île de Honshū (la principale île du Japon). Fukushima I s'étend sur 350 hectares à environ 225 km au nord-est de Tokyo et à 12 kilomètres au nord de Fukushima II, qui s'étend sur 150 hectares.

Fukushima I a été mise en service le 26 mars 1971. La puissance installée est de 4 696 MWe.

Réacteur de type Mark-I présent dans les bâtiments 1 à 5 de la centrale de Fukushima Daiichi (le réacteur no 6 est conçu de manière différente[6])
Schéma du réacteur no 6 (de type Mark II[6])

Elle comprend 6 réacteurs à eau bouillante (REB). Les réacteurs 1 à 5 sont de type Mark I et le réacteur no 6 est de type Mark II[7]. Ils ont été construits par trois constructeurs différents entre 1967 et 1979 :

  • Fukushima-Daiichi 1 : 439 MWe (puissance brute 460 MWe[8]), mis en service en 1971, construit par General Electric ; c'est le plus ancien et le moins puissant des 6 réacteurs du site. Son exploitation était initialement estimée à 40 ans au plus, a été prolongée de dix ans en février 2011 ; fusion du cœur en mars 2011 à la suite du séisme et du tsunami ;
  • Fukushima-Daiichi 2 : 760 MWe (puissance brute 784 MWe[9]), mis en service en 1974, construit par General Electric ; fusion du cœur et endommagement de l'enceinte de confinement en mars 2011 à la suite du séisme et du tsunami
  • Fukushima-Daiichi 3 : 760 MWe (puissance brute 784 MWe[10]), mis en service en 1976, construit par Toshiba. Depuis septembre 2010, ce réacteur fonctionne avec 30 % de combustible MOX (mélange d'uranium et de plutonium) au lieu de l'uranium faiblement enrichi[4] ; fusion du cœur en mars 2011 à la suite du séisme et du tsunami ;
  • Fukushima-Daiichi 4 : 760 MWe (puissance brute 784 MWe[11]), mis en service en 1978, construit par Hitachi  ;
  • Fukushima-Daiichi 5 : 760 MWe (puissance brute 784 MWe[12]), mis en service en 1978, construit par Toshiba ;
  • Fukushima-Daiichi 6 : C'est un réacteur beaucoup plus puissant, de 1067 MWe (puissance brute 1100 MWe[13]), dessiné sur un autre modèle et mis en service en 1979, construit par General Electric[6].

Les cuves des 6 réacteurs de la centrale (et de toutes les cuves des réacteurs nucléaires du Japon) ont été forgées par Japan Steel Works[14], entreprise fondée en 1907 et restructurée après la Seconde Guerre mondiale[15]

Types de réacteurs[modifier | modifier le code]

La centrale est équipée de réacteurs nucléaires appelés « réacteurs à eau bouillante » (REB). Le fluide qui traverse le cœur est de l'eau déminéralisée qui, portée à ébullition au contact des barres de combustible, se transforme en vapeur et actionne des turbo-alternateurs pour produire de l'électricité[Note 2].

Fukushima I est équipée de six réacteurs, mis en service entre 1971 et 1979, dont cinq selon l'architecture Mark 1. Ils ont été construits par General Electric,Toshiba et Hitachi.

Le réacteur no 3 de Fukushima I présente une singularité : il a été rénové pour recevoir du combustible MOX ; l'enceinte de confinement primaire du cœur a été changée à la fin des années 1990, de même que d'autres composants principaux internes (en acier inoxydable type 304 (SS), remplacés par des pièces en acier spécial (à faible teneur en carbone ; de type inox 316 L) pour diminuer la « corrosion inter-granulaire » des métaux du cœur du réacteur (IGSCC) exposés à une radioactivité, des pressions et températures élevées dans l'eau[16].

Fonctionnement[modifier | modifier le code]

Schéma de principe du refroidissement d’un réacteur à eau bouillante[17]
Vue schématique d’un réacteur à eau bouillante (REB) Mark I tels que sont les réacteurs no 1 à 5 de la centrale de Fukushima I. Ce sont des réacteurs en acier spécial, à enceinte de confinement en béton et à piscine de condensation en acier de forme torique (structure en anneau sous le réacteur, WW). C’est la partie haute du bâtiment qui a été soufflée par l’explosion due à la formation d'hydrogène. La piscine d'entreposage (SFP[Note 3]) se trouve en haut, hors de l'enceinte de confinement. La partie haute de l'enceinte de confinement (SCSW) peut être démontée pour permettre le transfert du combustible sous eau.

Chaque réacteur contient une cuve d'acier étanche, épaisse de 16 centimètres, qui enferme un ensemble de tubes d'alliage de zirconium (dits « crayons ») verticaux parallèles remplis d'uranium enrichi, le combustible nucléaire radioactif. Cette partie est appelée le cœur du réacteur. Chaque tube, d'environ 4 mètres de long, contient un empilement d'environ 360 pastilles de combustible ici sous forme de céramique[18]. À titre de comparaison, une pastille de 7 grammes peut libérer autant d'énergie qu'une tonne de charbon[19].

Certains noyaux des atomes composant le combustible sont fissionnés quand ils sont frappés par des neutrons. Cette réaction nucléaire dégage une forte énergie et libère elle-même des neutrons entretenant ainsi une réaction en chaîne tant que les conditions nécessaires sont réunies. Quand le réacteur fonctionne, de l'eau circule dans la cuve ; elle est chauffée et transformée en vapeur au contact des crayons de combustible nucléaire[Note 4].

Pour maîtriser la réaction en chaîne, on utilise des grappes de barres mobiles verticales (généralement appelées « barres de contrôle ») qui ont la propriété d'absorber les neutrons. Dans un REB, elles sont situées en dessous du cœur et doivent être soulevées pour ralentir la réaction. Leur remontée totale dans le cœur, en cas d'urgence par exemple, permet d'arrêter totalement la réaction en chaîne.

Selon TEPCO[18], la dispersion des matières radioactives peut être freinée par cinq barrières en cas d'accident :

  1. la céramique des pastilles de combustible leur permet de résister aux hautes températures et à la corrosion ;
  2. les tubes métalliques contenant ces pastilles sont étanches et piègent en partie haute les gaz qui s'échappent des pastilles ;
  3. la cuve en acier qui abrite le cœur du réacteur constitue une troisième barrière ;
  4. l'enceinte de confinement d'une épaisseur de quatre centimètres qui entoure le réacteur constitue la quatrième barrière ;
  5. enfin cette enceinte est elle-même englobée dans un bâtiment dont les parois de béton ont une épaisseur de 1,5 mètre.

Dans le cas des réacteurs de la centrale de Fukushima I, l'enceinte de confinement en béton entourant la cuve est en communication via des tuyauteries de fort diamètre avec un tore placé en partie inférieure et contenant de l'eau froide et réfrigérée par un circuit externe dans laquelle les dites tuyauteries plongent. Ce système dit « de barbotage » permet de condenser la vapeur éventuellement présente dans le compartiment entourant la cuve du réacteur de façon à prévenir une augmentation excessive de pression. La réserve d'eau de barbotage sert également à condenser la décharge des soupapes de sûreté placées en amont des vannes d'isolement vapeur[20], vannes qui doivent se fermer à la demande, en 3 à 5 secondes en cas de nécessité[21]. Les éventuelles « décharges » de gaz ou de vapeur destinées à décomprimer l'enceinte de confinement sont faites grâce à une (ou plusieurs) lignes d'évents du tore de barbotage.

Les installations comportent en outre des bassins remplis d'eau (appelés « piscines ») destinés à l'entreposage à long terme des éléments combustibles usés déchargés des réacteurs, en vue de leur refroidissement. Dans ces piscines, la puissance thermique résiduelle des éléments combustibles décroît durant des durées variables jusqu'à rendre possible leur évacuation vers les centres de retraitement ou de stockage. Ces derniers s'effectuent en conteneur blindé sous air maintenu en légère dépression.

Caractéristiques des réacteurs de Fukushima-Daiichi[modifier | modifier le code]

Les caractéristiques détaillées de chaque réacteur sont données ci-après[22].

Nom du réacteur Type enceinte Modèle de réacteur Capacité [MW] Exploitant Constructeur Début constr. Raccord. au réseau Mise en service comm.
Thermique (MWt) brute (MWe) Nette (MWe)
Fukushima Daiichi-1 Mark-I BWR-3 1 380 460 439 TEPCO General Electric (GE)/GETSC juillet 1967 novembre 1970 mars 1971
Fukushima Daiichi-2 Mark-I BWR-4 2 381 784 760 TEPCO General Electric (GE)/T janvier 1969 décembre 1973 juillet 1974
Fukushima Daiichi-3 Mark-I BWR-4 2 381 784 760 TEPCO TOSHIBA décembre 1970 octobre 1974 mars 1976
Fukushima Daiichi-4 Mark-I BWR-4 2 381 784 760 TEPCO HITACHI février 1973 février 1978 octobre 1978
Fukushima Daiichi-5 Mark-I BWR-4 2 381 784 760 TEPCO TOSHIBA mai 1972 septembre 1977 avril 1978
Fukushima Daiichi-6 Mark-II BWR-5 3 293 1 100 1 067 TEPCO GE/T octobre 1973 avril 1979 octobre 1979

Gestion de la sûreté préalablement à l'accident du 11 mars 2011[modifier | modifier le code]

Maintenance[modifier | modifier le code]

L’enveloppe du cœur du réacteur no 3 a été changée à la fin des années 1990, de même que d’autres composants principaux internes en acier inoxydable du type 304 (norme AISI-SAE) qui ont été remplacés par des pièces en acier inoxydable du type 316 L à plus faible teneur en carbone et plus forte teneur en nickel pour diminuer la corrosion intergranulaire des métaux du cœur du réacteur (IGSCC)[23].

Incidents[modifier | modifier le code]

La compagnie d'électricité japonaise TEPCO a indiqué qu'il était possible qu'en 1978, l'une des barres de combustible nucléaire soit tombée dans le cœur d'un réacteur de l'unité no 3 de la centrale, ce qui pourrait avoir provoqué une réaction de fission nucléaire spontanée ayant atteint un stade critique[24].

Gestion de la sûreté par l'opérateur[modifier | modifier le code]

Un scandale qui éclate en 2002 révèle que TEPCO a, durant les années 1980 et 1990, falsifié une trentaine de rapports d'inspection constatant des fissures ou des corrosions sur les enveloppes des réacteurs dont ceux de la centrale de Fukushima. La direction de TEPCO doit démissionner et plusieurs réacteurs sont alors fermés[25],[26]. En 2007, on apprend que TEPCO a en fait dissimulé 199 incidents entre 1984 et 2002[27].

Dans un rapport remis le 28 février 2011 à l'Agence japonaise de sûreté nucléaire, TEPCO admet avoir de nouveau falsifié plusieurs rapports d'inspection: elle n'a en réalité pas contrôlé trente-trois éléments des six réacteurs de Fukushima-Daiichi. Parmi ceux-ci figurent un moteur et un générateur électrique d'appoint pour le réacteur no 1, ainsi qu'un tableau électrique qui n'avait pas été vérifié depuis 11 ans[28],[29],[30].

Le 31 mars, le Wall Street Journal révèle que les plans de gestion d'urgence de TEPCO, quoique conformes à la législation japonaise, ne correspondent qu'à des incident mineurs, ce qui n'a pas permis à l'opérateur de réagir efficacement durant les premiers jours de la crise. Interrogé sur cette question, un porte-parole de l'Agence japonaise de sûreté nucléaire déclare : « Nous sommes douloureusement conscients que ces plans étaient insuffisants »[31],[32].

Après l'irradiation de trois sous-traitants le 24 mars, l'Agence japonaise de sûreté nucléaire notifie immédiatement à l'opérateur de revoir ses mesures de radioprotection sur le site[33]. Malgré cela la chaîne de télévision Japonaise NHK révèle le 31 mars que la dosimétrie des travailleurs sur le site n'est pas précisément suivie car TEPCO n'a plus assez de dosimètres. Cela déclenche des réactions furieuses de la part des autorités japonaises[34].

Le 29 décembre 2011, NHK World révèle que les générateurs de secours, tombés en panne lors de l'accident nucléaire de Fukushima, avaient déjà subi une inondation 20 ans plus tôt à la suite d'une fuite d'eau. À cette occasion, deux des générateurs de secours étaient tombés en panne. Malgré cet incident, TEPCO avait seulement fait installer des portes étanches mais n'avait cependant pas déménagé en hauteur ces générateurs[35].

Risque sismique[modifier | modifier le code]

En mars 2007, la centrale nucléaire de Shika (exploitée par la Compagnie d'Électricité Hokuriku) fut secouée lors d'un tremblement de terre imprévu. En juillet, un autre séisme provoqua un incendie (et des fuites radioactives limitées) à la centrale de Kashiwazaki-Kariwa (exploitée par TEPCO). Ces problèmes provoquent au Japon une controverse sur le risque nucléaire en cas de tremblement de terre : « Le 25 mars, la centrale de Shika, exploitée par la Hokuriku Electric Power Co., a été affectée par un tremblement de terre qui n'était pas supposé pouvoir arriver. »[36] Les défaillances de l'Agence japonaise de sûreté nucléaire, des exploitants japonais en général, et de TEPCO en particulier sont pointées du doigt[37].

C'est également en 2007 que TEPCO réalise une étude sur le risque d'un tsunami de grande ampleur. L'étude estime ce risque à 10 % sur cinquante ans. TEPCO décide de le négliger, arguant que « cette estimation ne faisait pas consensus parmi les experts »[38].

Un comité d'experts est alors chargé de revoir les normes anti-sismiques. En août 2007 Katsuhiko Ishibashi, un sismologue japonais réputé, démissionne de ce comité : pour lui, les nouvelles normes ne sont pas assez strictes et ne garantiront pas la sûreté. Il écrit alors : « À moins de prendre des mesures radicales pour réduire la vulnérabilité des centrales nucléaires en cas de séisme, le Japon pourrait subir une réelle catastrophe nucléaire dans un proche avenir »[39],[40].

Selon The Daily Telegraph, un document communiqué par WikiLeaks montrerait qu'un expert de l'Agence internationale de l'énergie atomique (AIEA) a en décembre 2008 averti le Japon du caractère obsolète de ses critères de sécurité ; les réacteurs japonais, dont ceux de Fukushima, ne pouvant résister au maximum qu'à des séismes de magnitude 7 (le séisme du 11 mars 2011 était de magnitude 9). Plutôt que de contraindre les exploitants à renforcer leurs installations, le gouvernement japonais réagit en mettant sur pied un centre de réponse aux urgences sur le site de Fukushima[41],[42].

Risque lié aux effets d'un tsunami[modifier | modifier le code]

Les autorités de TEPCO ont indiqué que le mur de protection à Fukushima était conçu pour résister à des tsunamis déclenchant des vagues hautes de 5,7 mètres (en mars 2011, les vagues atteignirent la hauteur de 14 mètres du fait de leur énergie cinétique).

Accident consécutif au séisme majeur du 11 mars 2011[modifier | modifier le code]

La centrale nucléaire de Fukushima Daiichi 1 a subi son plus grave accident nucléaire à la suite du séisme du 11 mars 2011 de magnitude 9 qui a dévasté le nord de l'archipel nippon.

À la suite du tremblement de terre et du tsunami qui ont dévasté le Nord-Est du Japon le 11 mars 2011, les réacteurs 1, 2 et 3 ont subi une fusion du combustible.

Le 11 avril 2011, l'incident a été classé au niveau 7 au même titre que celui de Tchernobyl[43]'[44]'[45]. Fin août 2013, d'après TEPCO, gestionnaire de la centrale, celle-ci continue toujours à fuir[46].

Notes et références[modifier | modifier le code]

Notes[modifier | modifier le code]

  1. Daiichi en japonais regroupe deux termes : « dai » qui est un dénominateur ordinal (servant à classer), et « ichi »,qui veut dire « 1 ». Fukushima Daiichi est donc le site Fukushima no 1 (第一, signifiant « le premier » en japonais). De même, Daini veut dire « le deuxième », « ni » étant le chiffre « 2 ». Fukushima Daini est donc le site Fukushima no 2. Ainsi, Fukushima Daiichi 2 signifie le réacteur 2 sur le site numéro 1.
  2. Les réacteurs à eau bouillante constituent 21 % du parc mondial de réacteurs producteurs d'électricité. Les « réacteurs à eau pressurisée » (REP ou PWR), représentent 61 % de ce parc et en constituent la famille la plus importante.
  3. SF pour Spent Fuel
  4. Dans les réacteurs à eau pressurisée (REP), grâce à une pression plus élevée, l'eau qui circule dans le cœur est maintenue à l'état liquide. La vapeur se forme dans un générateur de vapeur à l'interface du circuit secondaire. C'est une différence essentielle entre les deux systèmes.

Références[modifier | modifier le code]

  1. (en) « PRIS country details », sur www-pub.iaea.org/ (consulté le 3 mars 2013)
  2. (en) « Japan 2012 », sur www-pub.iaea.org/ (consulté le 3 mars 2013)
  3. Daiichi, 第一, veut dire « numéro 1 »
  4. a et b Fukushima to Restart Using MOX Fuel for First Time ; Nuclear Street News Team ; Fri, Sep 17 2010, consulté 2011/03/12
  5. Les Affaires - 31/10/2011 : Il faudrait 30 ans pour fermer la centrale Fukushima
  6. a, b et c NISA, Voir dernière page du diaporama présentant les 6 réacteurs et les dégâts dus aux suites du tremblement de terre et du tsunami qu'il a engendré (PDF, 6 pages)
  7. Voir Fig 19 : Comparison of Mark II et Mark III + fig 22 Mark II General Electric, consulté 2011/03/26
  8. PRIS : Fukushima Daiichi 1 reactor details
  9. PRIS : Fukushima Daiichi 2 reactor details
  10. PRIS : Fukushima Daiichi 3 reactor details
  11. PRIS : Fukushima Daiichi 4 reactor details
  12. PRIS : Fukushima Daiichi 5 reactor details
  13. PRIS : Fukushima Daiichi 6 reactor details
  14. http://www.jsw.co.jp/en/index.html
  15. James C. Bennett ; [The strange link between samurai swords and Japan’s nuclear reactors]2011/03/15, consulté 2011/03/26
  16. (en) Jun Matsumoto, Core shroud replacement of Fukushima-Daiichi Unit #3, Nuclear Engineering and Design, Volume 191, Issue 2, 2 juillet 1999, pages 167-175, ISSN 0029-5493, DOI: 10.1016/S0029-5493(99)00139-9, résumé en ligne
  17. Hervé Morin, « Les caractéristiques du réacteur de Fukushima n° 1 », Le Monde, Paris,‎ 12 mars 2011 (lire en ligne)
  18. a et b (en) Tepco, « Nuclear / TEPCO-Safety Measures (fiche technique de TEPCO) »,‎ 11 janvier 2010 (consulté le 20 mars 2011)
  19. « Le cycle de vie du combustible nucléaire », sur Espace enseignants, EDF (consulté le 27 juillet 2011)
  20. Weirpower, exemple de vanne d'isolement vapeur (« Robinets d'arrêt de vapeur à soupape »)
  21. ASN Non-respect d’une exigence technique contribuant au maintien de l’intégrité du circuit primaire du réacteur (Avis d'incident), Paris, 2010-02-18, consulté 2012-03-16. Extrait : « Contrairement à l’eau du circuit primaire, l’eau du circuit secondaire n’est pas radioactive, sauf si une brèche ou une fuite, notamment en cas de rupture d’un tube de générateur de vapeur, met en communication les deux circuits. La vanne d’isolement vapeur a pour but d’éviter, dans un tel cas, une éventuelle dispersion de matières radioactives du circuit primaire vers l’environnement »
  22. (en) « Reactors in operations, 31 décembre 2009 », sur www-pub.iaea.org/ (consulté le 13 avril 2011)
  23. Jun Matsumoto ; Core shroud replacement of Fukushima-Daiichi Unit n°3 ; Nuclear Engineering and Design Volume 191, Issue 2, 2 July 1999, Pages 167-175 ; doi:10.1016/S0029-5493(99)00139-9 (Résumé)
  24. Reuters, 22 mars 2007.
  25. « Tepco, un géant nucléaire habitué de la controverse », L'Expansion,‎ 17 mars 2011 (lire en ligne)
  26. (en) « Repair Reports Falsified: Tepco executives to quit over atomic plant scandal », Japan Times,‎ 1er septembre 2002 (lire en ligne)
  27. (en) Kyodo News, « Tepco must probe 199 plant check coverups », Japan Times,‎ 2 février 2007 (lire en ligne)
  28. Tepco à nouveau épinglée pour sa maintenance hasardeuse, Le Monde, 23 mars 2001
  29. Fukushima : La Tepco dans le viseur, Paris Match, 22 mars 2011
  30. (en) Operator of Fukushima nuke plant admitted to faking repair records, Herald Sun, 20 mars 2011
  31. Agence France-Presse, « Le plan en cas d'accident à Fukushima était totalement inadapté », Romandie.com,‎ 31 mars 2011 (lire en ligne)
  32. (en) Phred Dvorak et Peter Landers, « Japanese Plant Had Barebones Risk Plan », The Wall Street Journal, New York,‎ 31 mars 2011
  33. (en) [PDF] Nuclear and Industrial Safety Agency, « Survey result of workers’ exposure in the turbine building of Unit 3 of Fukushima Dai-ichi Nuclear Power Station [communiqué de presse] »,‎ 25 mars 2011 [PDF]
  34. (en) JAIF Earthquake Report 39, Japan Atomic Industrial Forum, reprenant les informations communiquées sur NHK, 1er avril 2011 [PDF]
  35. « Fukushima plant's backup generator failed in 1991 », NHK World,‎ 29 décembre 2011 (consulté en 31 décembre 2011)
  36. (en) Jason Clenfield et Shigeru Sato, « Japan Nuclear Energy Drive Compromised by Conflicts of Interest », Bloomberg,‎ 12 décembre 2007 (lire en ligne)
  37. (en) Leo Lewis, « Nuclear crisis in Japan as scientists reveal quake threat to power plants », The Sunday Times, Londres,‎ 19 juillet 2007 (lire en ligne)
  38. « Japon : Tepco admet avoir écarté le risque d'un tsunami de plus de 6 mètres », La Tribune,‎ 29 mars 2011 (lire en ligne)
  39. (en) Ishibashi Katsuhiko, « Why Worry? Japan's Nuclear Plants at Grave Risk From Quake Damage », The Asia-Pacific Journal: Japan Focus,‎ 11 août 2007 (lire en ligne)
  40. (en) David Leppard, « Japan's nuclear plant quake protection too lax, said expert », The Australian, Sydney,‎ 13 mars 2011 (lire en ligne)
  41. (en) Steven Swinford et Christopher Hope, « Japan earthquake: Japan warned over nuclear plants, WikiLeaks cables show », The Telegraph,‎ 14 avril 2011 (lire en ligne)
  42. Agence France-Presse, « L'AIEA avait averti le Japon (WikiLeaks) », Le Figaro, Paris,‎ 17 mars 2011 (lire en ligne)
  43. http://www.ouest-france.fr/actu/actuDet_-Le-Japon-eleve-au-niveau-7-l%E2%80%99accident-nucleaire-de-Fukushima_39382-1761466_actu.Htm
  44. http://www.europe1.fr/International/Fukushima-accident-au-niveau-7-495549/
  45. http://www.europe1.fr/International/Japon-meme-niveau-que-Tchernobyl-495601/
  46. Fukushima-1: une concentration record de tritium détectée dans l'eau de mer le 19 août 2013 sur Ria Novosti

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]