Rhénium

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Rhénium
TungstèneRhéniumOsmium
Tc
   
 
75
Re
 
               
               
                                   
                                   
                                                               
                                                               
                                                               
                                   
Re
Bh
Tableau completTableau étendu
Informations générales
Nom, symbole, numéro Rhénium, Re, 75
Série chimique métaux de transition
Groupe, période, bloc 7 (VIIB), 6, d
Masse volumique 20,8 g·cm-3 (20 °C)[1]
Dureté 7
Couleur Blanc argenté
No CAS 7440-15-5 [2]
No EINECS 231-124-5
Propriétés atomiques
Masse atomique 186,207 ± 0,001 u[1]
Rayon atomique (calc) 135 pm (188 pm)
Rayon de covalence 1,51 ± 0,07 Å [3]
Configuration électronique [Xe]4f145d56s2
Électrons par niveau d’énergie 2, 8, 18, 32, 13, 2
État(s) d’oxydation 6, 4, 2, -2
Oxyde acide
Structure cristalline Hexagonal compact
Propriétés physiques
État ordinaire solide
Point de fusion 3 185 °C [1]
Point d’ébullition 5 596 °C [1]
Énergie de fusion 33,2 kJ·mol-1
Énergie de vaporisation 715 kJ·mol-1
Volume molaire 8,86×10-6 m3·mol-1
Pression de vapeur 3,24 Pa à 3 453 K
Vitesse du son 4 700 m·s-1 à 20 °C
Divers
Électronégativité (Pauling) 1,9
Chaleur massique 137 J·kg-1·K-1
Conductivité électrique 5,42×106 S·m-1
Conductivité thermique 47,9 W·m-1·K-1
Énergies d’ionisation
1re : 7,83352 eV [4] 2e : 1 260 kJ·mol-1
3e : 2 510 kJ·mol-1 4e : 3 640 kJ·mol-1
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
185Re 37,4 % stable avec 110 neutrons
186Re {syn.} 2×105 a β-
TI
0,218
0,149
186Os
186Re
187Re 62,6 % 4,35×1010 a α
β-
1,653
0,003
183Ta
187Os
Précautions
Directive 67/548/EEC<[5],[6]
État pulvérulent :
Facilement inflammable
F



SGH[6]
État pulvérulent :
SGH02 : Inflammable
Danger
H228, P210,
Unités du SI & CNTP, sauf indication contraire.

Le rhénium est un élément chimique du tableau périodique, de symbole Re et de numéro atomique 75.

Le rhénium est un métal argenté qui résiste bien à la corrosion et a une tolérance exceptionnelle à la chaleur.

Le rhénium a peu d'applications, en raison de sa rareté et des coûts de production élevés (son prix était de 14 000 € le kilogramme en 2010), mais son usage dans l'aéronautique est stratégique[7]. On l'extrait habituellement des poussières de molybdène, dans les fours industriels, dont il est un sous-produit poudreux de couleur grise, mais le rhénium se retrouve également à l'état de traces dans certains minéraux.

On se sert du rhénium pour améliorer la résistance thermique du filament des fours électriques, dans la production de thermocouples et comme catalyseur dans l'industrie chimique.

Il a pour particularité de n'être ni attaqué par l'acide chlorhydrique, ni par l'acide sulfurique mais se dissout dans l'acide nitrique.

Histoire[modifier | modifier le code]

Le rhénium (du latin Rhenus, le Rhin) est l'avant-dernier élément naturel à avoir été découvert, avant le francium. On considère généralement que c'est Walter Noddack, Ida Tacke et Otto Berg qui l'ont découvert en Allemagne en 1925. Ils l'ont détecté dans le minerai de platine et dans la colombite. Ils en ont trouvé aussi dans la gadolinite par spectroscopie de rayon X et dans la molybdénite. En 1928 ils en ont extrait 1 g à partir de 660 kg de molybdénite.

Le processus était si compliqué et le coût si élevé que la production fut arrêtée jusqu'au début des années 1950, quand on a commencé à préparer des alliages tungstène-rhénium et molybdène-rhénium. Ces alliages sont très utiles dans l'industrie, et on a alors une forte demande de rhénium, produit à partir de la molybdénite contenue dans le porphyre cuprifère.

Production[modifier | modifier le code]

La production mondiale est de 50 tonnes par an [8].

Les trois principaux pays producteurs sont[9] :

  • le Chili (42 % de la production mondiale) ;
  • les États-Unis (17 % de la production mondiale) ;
  • le Kazakhstan (17 % de la production mondiale).

Une application importante en physique : les hautes pressions[modifier | modifier le code]

Rhénium

Le rhénium est utilisé comme joint dans les cellules à enclumes de diamant (CED), qui sont des dispositifs permettant de générer des hautes pressions hydrostatiques. Le joint est la pièce métallique percée d'un trou et placée entre les deux diamants. Les conditions extrêmes de pression et de température réalisées lors de ces expériences imposent le choix d'un matériau très résistant : le rhénium est le plus indiqué, loin devant l'inox et l'alliage de CuBe.

Usage dans l'aéronautique[modifier | modifier le code]

La production de rhénium est utilisée aux trois quarts pour la fabrication de superalliages pour les turbines, principalement aéronautiques (voir en:Rhenium#Alloys dans la Wikipédia anglophone). Dans son initiative Matières premières (2008), la Commission européenne a déclaré que « les superalliages au rhénium sont un élément indispensable dans la production d'aéronefs modernes »[10].

Notes et références[modifier | modifier le code]

  1. a, b, c et d (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc,‎ 2009, 90e éd., Relié, 2804 p. (ISBN 978-1-420-09084-0)
  2. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  3. (en) Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán et Santiago Alvarez, « Covalent radii revisited », Dalton Transactions,‎ 2008, p. 2832 - 2838 (DOI 10.1039/b801115j)
  4. (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC,‎ 2009, 89e éd., p. 10-203
  5. Entrée de « Rhenium » dans la base de données de produits chimiques GESTIS de la IFA (organisme allemand responsable de la sécurité et de la santé au travail) (allemand, anglais) (JavaScript nécessaire)
  6. a et b SIGMA-ALDRICH
  7. Philippe Bihouix et Benoît de Guillebon, Quel futur pour les métaux ? Raréfaction des métaux : un nouveau défi pour la société, EDP Sciences, 2010, p. 149
  8. Philippe Bihouix et Benoît de Guillebon, Quel avenir pour les métaux ? Raréfaction des métaux, un nouveau défi pour la société, EDP Sciences, 2010, p. 149
  9. Philippe Bihouix et Benoît de Guillebon, Quel avenir pour les métaux ? Raréfaction des métaux, un nouveau défi pour la société, EDP Sciences, 2010, p. 106
  10. Philippe Bihouix et Benoît de Guillebon, Quel avenir pour les métaux ? Raréfaction de métaux, un nouveau défi pour la société, EDP Sciences, 2010, p. 149

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]


Sur les autres projets Wikimedia :

  s1 s2 g f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 p1 p2 p3 p4 p5 p6
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
8 Uue Ubn * Ute Uqn Uqu Uqb Uqt Uqq Uqp Uqh Uqs Uqo Uqe Upn Upu Upb Upt Upq Upp Uph Ups Upo Upe Uhn Uhu Uhb Uht Uhq Uhp Uhh Uhs Uho
   
  g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18  
  * Ubu Ubb Ubt Ubq Ubp Ubh Ubs Ubo Ube Utn Utu Utb Utt Utq Utp Uth Uts Uto  


Métalloïdes Non-métaux Halogènes Gaz rares
Métaux alcalins  Métaux alcalino-terreux  Métaux de transition Métaux pauvres
Lanthanides Actinides Superactinides Éléments non classés