Ytterbium

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Ytterbium
Ultrapure ytterbium, 2 grams. Original size in cm - 1 x 1.5.jpg
Fragment d'ytterbium.
ThuliumYtterbiumLutécium
   
 
70
Yb
 
               
               
                                   
                                   
                                                               
                                                               
                                                               
                                   
Yb
No
Tableau completTableau étendu
Informations générales
Nom, symbole, numéro Ytterbium, Yb, 70
Série chimique Lanthanides
Groupe, période, bloc L/A, 6, f
Masse volumique 6,903 g·cm-3 (α)
6,966 g·cm-3 (β)[1]
Couleur blanc argenté
No CAS 7440-64-4 [2]
Propriétés atomiques
Masse atomique 173,04 ± 0,03 u[1]
Rayon atomique (calc) 175 pm (222 pm)
Rayon de covalence 187 ± 8 pm [3]
Configuration électronique [Xe] 4f14 6s2
Électrons par niveau d’énergie 2,8,18,32,8,2
État(s) d’oxydation 3
Oxyde basique
Structure cristalline Cubique à faces centrées
Propriétés physiques
État ordinaire solide
Point de fusion 824 °C [1]
Point d’ébullition 1 196 °C [1]
Énergie de fusion 7,66 kJ·mol-1
Énergie de vaporisation 128,9 kJ·mol-1
Volume molaire 24,84×10-3 m3·mol-1
Vitesse du son 1 590 m·s-1 à 20 °C
Divers
Électronégativité (Pauling) 1,1
Chaleur massique 150 J·kg-1·K-1
Conductivité électrique 3,51×106 S·m-1
Conductivité thermique 34,9 W·m-1·K-1
Énergies d’ionisation[4]
1re : 6,25416 eV 2e : 12,176 eV
3e : 25,05 eV 4e : 43,56 eV
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
168Yb 0,13 % stable avec 98 neutrons
170Yb 3,05 % stable avec 100 neutrons
171Yb 14,3 % stable avec 101 neutrons
172Yb 21,9 % stable avec 102 neutrons
173Yb 16,12 % stable avec 103 neutrons
174Yb 31,8 % stable avec 104 neutrons
176Yb 12,7 % stable avec 106 neutrons
Précautions
Directive 67/548/EEC[5]
État pulvérulent :
Nocif
Xn
Facilement inflammable
F



SGH[5]
État pulvérulent :
SGH02 : InflammableSGH07 : Toxique, irritant, sensibilisant, narcotique
Danger
H228, H302, H312, H315, H319, H332, H335, P210, P261, P280, P305, P338, P351,
Unités du SI & CNTP, sauf indication contraire.
Échantillon d'ytterbium.

L'ytterbium est un élément chimique de symbole Yb et de numéro atomique 70.

L'ytterbium est un métal du groupe des terres rares. Comme les autres lanthanides, il est gris argent, malléable et ductile à la température ambiante. Il doit être conservé à l'abri de l'air, surtout humide.

L'appellation ytterbium, provient de l'endroit, Ytterby près de Stockholm en Suède, où l'on a découvert le minerai dans lequel ont également été identifiées plusieurs autres terres rares. Les éléments chimiques yttrium et erbium partagent la même étymologie.

Comme la plupart des lanthanides il est extrait de la monazite où on le trouve dans une proportion de 0,03 %. L'ytterbium a trois formes allotropiques. Les températures de transition sont −13 °C et 795 °C. Entre ces deux températures, (forme béta) il adopte une structure cubique à faces centrées, tandis qu'à haute température (forme gamma), il devient cubique centré. L'ytterbium naturel est un mélange de 7 isotopes stables.

Découverte[modifier | modifier le code]

En 1789, le chimiste finlandais Johan Gadolin identifie un nouvel oxyde (ou « terre ») dans un échantillon d'ytterbite (rebaptisée plus tard « gadolinite » en son honneur). Cette nouvelle roche avait été découverte deux ans auparavant par le lieutenant Carl Axel Arrhenius près du village d'Ytterby en Suède. Ces travaux sont confirmés en 1797 par Anders Gustaf Ekeberg qui baptise le nouvel oxyde yttria[6].

Près d'un demi-siècle plus tard, le Suédois Carl Gustav Mosander parvient à isoler trois composés distincts à partir de l'yttria grâce à de nouveaux procédés de cristallisation fractionnée. Il décide de conserver le terme yttria pour la fraction incolore (oxyde d'yttrium pur) et nomme la fraction jaune erbia et la fraction rose terbia, toujours en rappel du village d'Ytterby. Pour d'obscures raison, les successeurs de Mosander intervertiront ces deux termes. C'est ainsi que erbia (l'erbine) finit par désigner l'oxyde d'erbium (rose) et terbia (la terbine) l'oxyde de terbium (jaune)[7].

En 1878, le chimiste suisse Jean Charles Galissard de Marignac découvre que l'erbine n'est pas homogène et contient en fait plusieurs éléments distincts. En traitant les chlorures en solution avec de l'acide hyposulfureux, il parvient à séparer un nouveau sel, incolore, des sels roses d'oxyde d'erbium. Consacrant la place d'Ytterby dans l'histoire de la nomenclature chimique, il nomme cette « terre » ytterbine (en latin ytterbia) et la considère comme un composé d'un nouvel élément chimique, l'ytterbium[7].

Ces expériences sont répétées l'année suivante en Suède par Lars Fredrik Nilson qui confirme la découverte et parvient à isoler un élément supplémentaire en poursuivant la procédure de fractionnement. Il le nomme scandium en l'honneur de la Scandinavie[8].

Le Français Georges Urbain, l'Autrichien Carl Auer von Welsbach et l'Américain Charles James (en) découvrent presque simultanément et indépendamment en 1907 que l'ytterbine de Marignac est constituée de deux éléments distincts. Le 4 novembre 1907, Urbain présente ses recherches à l'Académie des Sciences de Paris et propose de nommer les deux éléments néo-ytterbium, « afin d'éviter les confusions avec l'ancien élément de Marignac », et lutécium, « dérivé de l'ancien nom de Paris »[9]. Le 19 Décembre, Le baron von Welsbach annonce à son tour le résultat de ses travaux menés depuis 1905. Il recommande les noms cassiopeium (Cp, d'après la constellation Cassiopée, correspondant au lutécium) et aldebaranium (Ad, d'après l'étoile Aldébaran, en remplacement de l'ytterbium)[10]. Parallèlement, à l'Université du New Hampshire, Charles James avait pu isoler des quantités importantes du compagnon de l'ytterbium durant l'été 1907. Apprenant l'annonce faite par Georges Urbain, il renonce à revendiquer la paternité du nouvel élément. Pourtant, parmi les trois scientifiques, il était probablement celui dont les recherches étaient les plus avancées[7].

Durant les années qui suivent, Urbain et von Welsbach se disputent la paternité de la découverte dans un conflit exacerbé par les tensions politiques entre la France et l'Autriche-Hongrie. En 1909, la Commission Internationale des Poids atomiques donne finalement la préséance au lutécium de Georges Urbain (réorthographié lutetium), tout en conservant le nom ytterbium pour le second élément[7].

Utilisations[modifier | modifier le code]

Très peu d'utilisations courantes :

  • acier inoxydable : amélioration des propriétés de traitement de l'acier inoxydable ;
  • horloge atomique[11];
  • ion actif pour cristaux laser : ion actif de plus en plus utilisé dans des cristaux laser comme Yb:YAG ou Yb:KYW émettant à environ 1030-1070 nm (environ 1 micromètre) dans le proche infrarouge.

Quelques pistes, actuellement en phase de recherche :

  • activateur de substance phosphorescente pour la lumière infrarouge sous forme de Yb2O3 ;
  • dopant des lentilles acoustiques en silicone pour barrettes échographiques sous forme de Yb2O3 ;
  • médecine, radiographie industrielle : source de rayonnement entre autres pour des appareils radiographiques portables utilisant 169Yb, son spectre d'émission permet de réaliser des clichés de très bonne qualité, voisins de clichés obtenus avec un tube à rayons X ;
  • semi-conducteur : halogénure de Yb ;
  • supraconducteur : YbAlAu, YbAlB4;
  • jauge de contrainte : permettrait de mesurer les très fortes contraintes en utilisant la variation de sa conductivité.

Notes et références[modifier | modifier le code]

  1. a, b, c et d (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc, , 90e éd., 2804 p., Relié (ISBN 978-1-420-09084-0)
  2. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  3. (en) Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán et Santiago Alvarez, « Covalent radii revisited », Dalton Transactions,‎ , p. 2832 - 2838 (DOI 10.1039/b801115j)
  4. (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC, , 89e éd., p. 10-203
  5. a et b SIGMA-ALDRICH
  6. (en) John Emsley, Nature's building blocks : an A-Z guide to the elements, Oxford University Press, , 240–242 p. (ISBN 0198503415, lire en ligne).
  7. a, b, c et d (en) Per Enghag, Encyclopedia of the Elements, John Wiley & Sons, , 1309 p. (lire en ligne).
  8. (en) Nagaiyar Krishnamurthy et Chiranjib Kumar Gupta, Extractive Metallurgy of Rare Earths, CRC Press, , 504 p. (lire en ligne)
  9. Georges Urbain, « Un nouvel élément, le lutécium, résultant du dédoublement de l'ytterbium de Marignac », dans Comptes rendus hebdomadaires des séances de l'Académie des sciences, t. 144, , p. 759–762, disponible sur Gallica
  10. (de) Carl Auer von Welsbach, « Die Zerlegung des Ytterbiums in seine Elemente », Monatshefte für Chemie, vol. 29,‎ , p. 181–225
  11. http://www.lemonde.fr/sciences/article/2013/08/23/l-horloge-la-plus-precise-au-monde-devoilee_3465319_1650684.html

Sur les autres projets Wikimedia :

  s1 s2 g f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 p1 p2 p3 p4 p5 p6
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
8 Uue Ubn * Ute Uqn Uqu Uqb Uqt Uqq Uqp Uqh Uqs Uqo Uqe Upn Upu Upb Upt Upq Upp Uph Ups Upo Upe Uhn Uhu Uhb Uht Uhq Uhp Uhh Uhs Uho
   
  g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18  
  * Ubu Ubb Ubt Ubq Ubp Ubh Ubs Ubo Ube Utn Utu Utb Utt Utq Utp Uth Uts Uto  


Métalloïdes Non-métaux Halogènes Gaz rares
Métaux alcalins  Métaux alcalino-terreux  Métaux de transition Métaux pauvres
Lanthanides Actinides Superactinides Éléments non classés