Unbibium

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Unbibium
UnbiuniumUnbibiumUnbitrium
   
 
122
Ubb
 
               
               
                                   
                                   
                                                               
                                                               
   
                                           
Ubb
Tableau completTableau étendu
Informations générales
Nom, symbole, numéro Unbibium, Ubb, 122
Série chimique Superactinide[1]
Groupe, période, bloc SA, 8, g
No CAS 54576-73-7[2]
Propriétés atomiques
Configuration électronique Peut-être[3] :
[Og] 8s2 8p1 7d1
Électrons par niveau d’énergie Peut-être :
2, 8, 18, 32, 32, 18, 9, 3
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
Unités du SI & CNTP, sauf indication contraire.

L'unbibium (symbole Ubb) est la dénomination systématique attribuée par l'UICPA à l'élément chimique hypothétique de numéro atomique 122. Dans la littérature scientifique, il est généralement appelé élément 122.

Cet élément de la 8e période du tableau périodique appartiendrait à la série des superactinides, et ferait partie des éléments du bloc g. Sa configuration électronique serait, par application la règle de Klechkowski, [Og] 8s2 5g2, mais a été calculée, en prenant en compte les corrections induites par la chromodynamique quantique et la distribution relativiste de Breit-Wigner (en)[4], comme étant [Og] 8s2 8p2 ; d'autres résultats ont été obtenus par des méthodes un peu différentes, par exemple [Og] 8s2 8p1 7d1 par la méthode Dirac-Fock-Slater[3], de sorte que l'élément 122 n'aurait pas d'électron dans la sous-couche 5g.

Tentatives de synthèse[modifier | modifier le code]

La synthèse de cet élément a été tentée par les deux acteurs habituels en matière de noyaux superlourds, à savoir le Joint Institute for Nuclear Reserach (JINR) à Doubna en Russie dès 1972, et le Gesellschaft für Schwerionenforschung mbH (GSI) à Darmstadt en Allemagne en 2000. Les deux laboratoires ont bombardé des cibles d'uranium 238 avec des ions de zinc 66 pour le JINR, et de zinc 70 pour le GSI, dans l'espoir de produire des noyaux de 304122 et 308122 respectivement[5] :

66
30
Zn
+ 238
92
U
304
122
Ubb*
au JINR par fusion chaude (Flerov et al. en 1972) avec une résolution de mb ;
70
30
Zn
+ 238
92
U
308
122
Ubb*
au GSI en 2000 selon la même méthode mais avec une bien meilleure résolution.

Ces expériences infructueuses ont néanmoins montré que la détection de l'élément 122 nécessiterait d'atteindre des sensibilités aussi fines que quelques femtobarns.

Le GSI avait auparavant tenté de produire en 1978 de l'élément 122 en bombardant une cible d'erbium naturel avec des ions de xénon 136 :

136
54
Xe
+ naturel
68
Er
298, 300, 302, 303, 304, 306
122
Ubb*
échec.

Plusieurs expériences ont été menées au JINR dans les années 2000-2004 pour étudier les caractéristiques de fission de noyaux composés de 306122. Deux réactions ont été explorées[5] :

58
26
Fe
+ 248
96
Cm
306
122
Ubb*
 ;
64
28
Ni
+ 242
94
Pu
306
122
Ubb*
.

Ces expériences ont révélé comment des noyaux comme celui-ci fissionnent essentiellement en expulsant des nucléides à couches nucléaires pleines, comme l'étain 132 (Z = 50, N = 82). Elles ont également permis de montrer que le rendement du processus de fusion-fission étant semblable qu'on utilise des projectiles de 48Ca ou de 58Fe, ce qui avait montré la possibilité d'utiliser ces derniers, qui sont plus lourds, pour la synthèse d'éléments superlourds.

Compte tenu de l'impossibilité jusqu'à ce jour d'observer l'élément 122, l'annonce d'A. Marinov et al. en 2008 selon laquelle ils auraient détecté un taux de 10−11 à 10−12 atomes de cet élément dans un dépôt naturel de thorium[6] a été largement rejetée[7], bien que l'auteur suggère avoir mis en évidence un isomère stable d'un isotope d'élément 122 qui se serait accumulé naturellement en raison de sa période radioactive supérieure à cent millions d'années ; il aurait, selon ses dires, soumis son article pour publication aux revues britanniques Nature et Nature Physics qui l'auraient toutes deux refusé[8].

Stabilité des nucléides de cette taille[modifier | modifier le code]

Aucun superactinide n'a jamais été observé, et on ignore si l'existence d'un atome aussi lourd est physiquement possible.

Le modèle en couches du noyau atomique prévoit l'existence de nombres magiques[9] par type de nucléons en raison de la stratification des neutrons et des protons en niveaux d'énergie quantiques dans le noyau postulée par ce modèle, à l'instar de ce qu'il se passe pour les électrons au niveau de l'atome ; l'un de ces nombres magiques est 126, observé pour les neutrons mais pas encore pour les protons, tandis que le nombre magique suivant, 184, n'a jamais été observé : on s'attend à ce que les nucléides ayant environ 126 protons (unbihexium) et 184 neutrons soient sensiblement plus stables que les nucléides voisins, avec peut-être des périodes radioactives supérieures à la seconde, ce qui constituerait un « îlot de stabilité ».

La difficulté est que, pour les atomes superlourds, la détermination des nombres magiques semble plus délicate que pour les atomes légers[10], de sorte que, selon les modèles, le nombre magique suivant serait à rechercher pour Z compris entre 114 et 126.

Plus précisément, le 306122 pourrait être « doublement magique » avec 122 protons et 184 neutrons, selon l'une des versions de la théorie dite du « champ moyen relativiste » (RMF). L'unbibium fait partie des éléments dont il serait possible de produire, avec les techniques actuelles, des isotopes dans l'îlot de stabilité ; la stabilité particulière de tels nucléides serait due à un effet quantique de couplage des mésons ω[11], l'un des neuf mésons dits « sans saveur ».

Notes et références[modifier | modifier le code]

  1. L'élément 122 n'ayant jamais été synthétisé ni a fortiori reconnu par l'UICPA, il n'est pas classé dans une série chimique. On le range éventuellement parmi les superactinides à la suite des travaux de Glenn Seaborg sur l'extension du tableau périodique dans les années 1940, mais, en toute rigueur, il est chimiquement « non classé ».
  2. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  3. a et b (en) B. Fricke et G. Soff, « Dirac-Fock-Slater calculations for the elements Z = 100, fermium, to Z = 173 », Atomic Data and Nuclear Data Tables, vol. 19, no 1,‎ , p. 83-95 (DOI 10.1016/0092-640X(77)90010-9, Bibcode 1977ADNDT..19...83F, lire en ligne)
  4. (en) Koichiro Umemoto et Susumu Saito, « Electronic Configurations of Superheavy Elements », Journal of the Physical Society of Japan, vol. 65,‎ , p. 3175-3179 (DOI 10.1143/JPSJ.65.3175, lire en ligne)
  5. a et b (en) Johen Emsley, Nature's Building Blocks: An A-Z Guide to the Elements, New York, Oxford University Press, (ISBN 978-0-19-960563-7), p. 588
  6. (en) A. Marinov, I. Rodushkin, D. Kolb, A. Pape, Y. Kashiv, R. Brandt, R. V. Gentry et H. W. Miller, « Evidence for the possible existence of a long-lived superheavy nucleus with atomic mass number A = 292 and atomic number Z ≅ 122 in natural Th », International Journal of Modern Physics E, vol. 19, no 01,‎ , article no 131 (DOI 10.1142/S0218301310014662, arXiv 0804.3869, lire en ligne)
  7. En raison semble-t-il à la fois du manque de fiabilité du mode opératoire aboutissant à ce résultat, d'incohérences dans l'article soumis à publication, et des antécédents de M. Marinov en matière d'annonces prématurées d'éléments superlourds.
  8. Royal Society of Chemistry, Chemistry World, "Heaviest element claim criticised"
  9. Encyclopaedia Britannica : article « Magic Number », § « The magic numbers for nuclei ».
  10. (en) Robert V. F. Janssens, « Nuclear physics: Elusive magic numbers », Nature, vol. 435,‎ , p. 897-898(2) (DOI 10.1038/435897a, lire en ligne)
  11. (en) G. Münzenberg, M. M. Sharma, A. R. Farhan, « α-decay properties of superheavy elements Z=113-125 in the relativistic mean-field theory with vector self-coupling of ω meson », Phys. Rev. C, vol. 71,‎ , p. 054310 (DOI 10.1103/PhysRevC.71.054310, lire en ligne)

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]



1  H     He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8  119 120 *    
  * 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142  


Métaux
  Alcalins  
  Alcalino-  
terreux
  Lanthanides     Métaux de  
transition
Métaux
  pauvres  
  Métal-  
loïdes
Non-
  métaux  
Halo-
  gènes  
Gaz
  nobles  
Éléments
  non classés  
Actinides
    Superactinides