Technétium 99

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 17 mars 2013 à 12:18 et modifiée en dernier par Addbot (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

Le technétium 99, noté 99Tc, est l'isotope du technétium dont le nombre de masse est égal à 99 : son noyau atomique compte 43 protons et 56 neutrons avec un spin 9/2+ pour une masse atomique de 98,906 254 7 g/mol. Il est caractérisé par un défaut de masse de 87 323 307 ± 1 916 eV/c2 et une énergie de liaison nucléaire de 852 743 069 ± 1 921 eV[1].

Un gramme de technétium 99 présente une radioactivité de 629 MBq.

C'est un radioisotope, qui connaît une désintégration β de faible intensité en ruthénium 99 avec une période radioactive de 211 000 ans et une énergie de désintégration de 294 keV :

.

C'est le plus important produit de fission à longue durée de vie. Il n'est pas très dangereux à manipuler, car le faible rayonnement β est arrêté par les vitres du laboratoire, ce qui provoque, par Bremsstrahlung, l'émission de rayons X doux qui ne représentent aucun risque tant qu'on reste à plus de 30 cm de ces vitres. Le risque principal est en fait l'inhalation de poussières de technétium, qui constituent un réel danger par leur effet cancérogène.

Comme déchet nucléaire, le technétium 99 pose, avec l'iode 129 un problème sérieux en raison de sa propension à former des espèces anioniques, alors que les techniques de retraitement des produits de fission concernent surtout les espèces cationiques telles que le strontium 90, le césium 134 et le césium 137 ; les pertechnétates TcO4 et les iodures échappent ainsi généralement à ces traitements.

L'option généralement retenue pour se débarrasser du technétium produit par les centrales nucléaires consiste à l'enfouir dans une roche géologiquement stable. Le principal risque est alors que le technétium entre en contact avec l'eau, car dans ce cas il contamine largement l'environnement : les espèces anioniques qu'il forme ne se lient que très faiblement aux minéraux des sols, contrairement par exemple au césium, à l'uranium et au plutonium, de sorte que la contamination s'étend rapidement.

Une méthode alternative de retraitement, réalisée au CERN, consiste à bombarder le technétium 99 avec des neutrons pour former du technétium 100, lequel se désintègre rapidement en ruthénium 100, stable, avec une période de seize secondes.

Notes et références

  1. Matpack – Periodic Table of the Elements Properties of Nuclides: 43-Tc-99

Articles liés

Liens externes


  1 2                               3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H     He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8  119 120 *    
  * 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142  


Métaux
  Alcalins  
  Alcalino-  
terreux
  Lanthanides     Métaux de  
transition
Métaux
  pauvres  
  Métal-  
loïdes
Non-
  métaux  
Halo-
  gènes  
Gaz
  nobles  
Éléments
  non classés  
Actinides
    Superactinides