Deep Space Network

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
L'antenne de 70 m de diamètre, à Goldstone

Le Deep Space Network (réseau de communications avec l'espace lointain) ou DSP est un réseau de trois stations d'émission/réception équipé d'antennes paraboliques détenu par l'agence spatiale américaine, la NASA. Il est utilisé pour les communications avec ses sondes spatiales interplanétaires et dans le cadre de quelques missions en orbite autour de la Terre. Le réseau est également utilisé par d'autres agences spatiales qui ne disposent pas de leur propre réseau d'antennes ou comme appoint dans le cadre d'accords interagences. Le Deep Space Network permet également de localiser des corps célestes avec précision (notamment grâce à l'interférométrie à très longue base) et d'en étudier les propriétés dans un cadre scientifique. Il est géré par le Jet Propulsion Laboratory (JPL). Il est connu pour ses grandes antennes, dont la plus grande a un réflecteur parabolique de 70 mètres de diamètre.

Histoire[modifier | modifier le code]

Les origines du réseau américain de communications avec l'espace lointain remontent à 1958, lorsque l'armée américaine passe un contrat avec le Jet Propulsion Laboratory pour assurer la télémétrie d'Explorer 1, premier satellite américain. Des stations d'émission / réception portables sont alors installées au Nigeria, à Singapour et en Californie. Le Jet Propulsion Laboratory est intégré à l'agence spatiale de la NASA peu après la création de celle-ci le 1er octobre 1958. En 1959, il est décidé que le réseau Deep Space serait un service de communications géré de façon séparée en charge de toutes les missions interplanétaires américaines.

Installations[modifier | modifier le code]

Le réseau Deep Space est composé d'installations installées dans trois lieux géographiques distincts :

Ces trois sites sont espacés d'environ 120° en longitude afin d'assurer des liaisons ininterrompues avec les sondes spatiales malgré la rotation de la Terre. Compte tenu des distances en jeu, une sonde spatiale vu d'un point fixe sur Terre se déplace en effet dans le ciel comme un corps céleste : il se lève à l'Est et se couche à l'Ouest 7h à 14h plus tard. Avec la répartition des antennes adoptées, la transmission est maintenue en transférant la liaison radio d'une station à l'autre.

Chaque complexe contient au minimum 4 stations, chacune d'entre elles contenant plusieurs antennes paraboliques. Plus précisément, dans chaque complexe, on trouvera plusieurs antennes de 34 mètres de diamètre, une de 26 mètres, une de 11 mètres et une de 70 mètres. Un centre de traitement du signal centralisé (signal processing center, SPC) contrôle à distance celles de 34 m et de 70 m, génère et transmet les commandes pour les sondes spatiales, reçoit et traite la télémétrie.Les antennes d'un même complexe peuvent travailler en réseau, ou même avec d'autres antennes en dehors du réseau Deep Space (par exemple, l'antenne de 70 mètres de Canberra peut être mise en réseau avec le radio télescope de l'Observatoire de Parkes en Australie, et l'antenne de 70 m de Goldstone peut être en réseau avec le Very Large Array au Nouveau-Mexique)[1].

Utilisations[modifier | modifier le code]

Le réseau Deep Space est un moyen de communication bidirectionnel : la liaison montante (uplink) est utilisée pour envoyer des commandes, et la liaison descendante (downlink) sert pour la télémétrie. Mais le réseau Deep Space ne se limite pas à la seule fonction de communication  :

  • Télémétrie : réception des signaux envoyés par les sondes spatiales. Cela se fait en trois étapes : réception, conditionnement de données puis transmission vers des lieux de traitement.
  • Envoi de commandes : contrôle à distance de l'activité des sondes spatiales.
  • Tracking radiométrique[2] : communication uni ou bi-directionnelle entre station et sonde pour faire des mesures permettant de déduire la position et la vitesse du mobile. La mesure de distance est basée sur la mesure du temps aller-retour et la vitesse se déduit de l'effet Doppler.
  • Interférométrie à très longue base (VLBI)[3] : le but est de connaître avec précision la position d'un objet fixe dans le ciel, comme les quasars, les galaxies ou les étoiles lointaines. La localisation d'une sonde spatiale pourra ensuite se faire par rapport à cet objet plutôt que par rapport à la Terre : cela permet de réduire les incertitudes liées à la rotation de la Terre et aux dégradations du signal sur le trajet. Cette technique de localisation est très utilisée et est appelée Delta Differential One-way Ranging ou Delta VLBI[2].
  • Radio Science : il s'agit d'obtenir des informations scientifiques à partir de la propagation de l'onde radio entre la Terre et la sonde. Lorsque le signal passe à proximité d'un corps céleste, il va être perturbé et les scientifiques peuvent en déduire des propriétés comme la taille de l'objet, sa masse, la densité de son éventuelle atmosphère. On peut aussi caractériser des anneaux planétaires, la couronne solaire ou des plasmas interplanétaires. La gravité peut aussi être étudiée grâce à ce lien radio : quand la sonde passe à proximité d'un objet massif, le trajet de l'onde radio est modifié selon les lois de la relativité générale.
  • Radioastronomie : étudier les ondes radio émises par des corps célestes pour en déduire des propriétés sur la composition ou sur les processus physiques.
  • Radar-astronomie : envoyer un signal le plus puissant possible et étudier le signal réfléchi.
  • Contrôle et monitorage : envoi des données en temps réel aux utilisateurs et aux opérateurs du réseau Deep Space.

Fréquences[modifier | modifier le code]

Les bandes de fréquences utilisées pour les communications entre la Terre et les sondes spatiales sont la bande S, la bande X et plus récemment la bande Ka. L'Union internationale des télécommunications impose des plages de fréquences normalisées[4] qui sont présentées dans le tableau ci-dessous. Les fréquences sont données en GHz, Liaison montante désigne le lien Terre vers espace et Liaison descendante désigne espace vers Terre. On distingue les communications dites proches pour des distances inférieures à 2 millions de kilomètres, de celles dites lointaines.

Fréquences allouées par l'UIT (en GHz)
Liaison montante (> 2 millions km) Liaison descendante (> 2 millions km) Liaison montante (< 2 millions km) Liaison descendante (< 2 millions km)
Bande S 2,110 - 2,120 2,290 - 2,300 2,025 - 2,110 2,200 - 2,290
Bande X 7,145 - 7,190 8,400 - 8,450 7,190 - 7,235 8,450 - 8,500
Bande Ka 34,200 - 34,700 31,800 - 32,300

Dans les années 1990, l'utilisation de la bande Ka sur les antennes de 70 mètres est démontrée en R&D. La mise en place de l'uplink en bande X date de juin 2000 sur ces mêmes antennes. En 2008, les antennes de 70 mètres ont été dotées d'un émetteur / récepteur en bande Ka.

Les antennes[modifier | modifier le code]

À l'heure actuelle, toutes les antennes du réseau Deep Space sont de type Cassegrain [5]. Elles diffèrent par leur monture, leur diamètre, les fréquences dans lesquelles elles sont capables d'émettre et de recevoir, et de manière générale par les technologies mises en œuvre qui donneront différentes valeurs de gain et de température équivalente de bruit.

Vue d'ensemble : performances[modifier | modifier le code]

Performance des antennes[6],[7],[8],[9],[10]
Puissance émission Gain (émission) G/T (réception)
26 m bande S[6],[8] 200 W à 20 kW 52,5 dB 31,8 dB [1/K]
34 m HEF bande S[6],[9] pas d'uplink 56,0 dB 40,2 dB [1/K]
34 m HEF bande X[6],[9] 200 W à 20 kW 68,3 dB 54,0 dB [1/K]
34 m BWG bande S[6],[10] 200 W à 20 kW 56,7 dB 41,0 dB [1/K]
34 m BWG bande X[6],[10] 200 W à 20 kW 68,4 dB 55,4 dB [1/K]
34 m BWG bande Ka[6],[10] 50 W à 800 W 79,0 dB 65,7 dB [1/K]
70 m bande S[6],[7] 200 W à 400 kW 63,5 dB 51,0 dB [1/K]
70 m bande X[6],[7] 200 W à 20 kW 74,6 dB 62,8 dB [1/K]
  • Les performances du tableau ci-dessus sont donnés pour l'une des antennes de chaque type ; pour chaque type, les performances des autres antennes du réseau (dans les autres complexes) varient légèrement[6].
  • Le gain est donné sans prendre en compte l'atmosphère et le facteur de mérite G/T est mesuré à un angle d'élévation de 45 degrés dans des conditions de ciel clair. Des corrections sont donc à apporter à pour obtenir les valeurs à l'élévation et dans les conditions météorologiques voulues[11].

Le gain est mesuré à une certaine fréquence centrale f_0 (ici la fréquence la plus basse de la bande, le gain à des fréquences plus élevées (resp. plus basses) devra être augmenté (resp. réduit) de 20 \log(f/f_0). La même remarque est valable pour le G/T.

Antenne de 34 m à haute efficacité (HEF)[modifier | modifier le code]

L'antenne de 34 m à haute efficacité (HEF)[5],[9] a été introduite au milieu des années 1980, avec comme cahier des charges une réception ou émission sur les bande S et bande X simultanément. Sa première utilisation remonte à 1986 sur la mission Voyager 2 à destination de Saturne. Malgré son nom, l'efficacité de cette antenne est comparable à celle des autres antennes aujourd'hui en fonctionnement, mais comme elle a été conçue alors que des antennes de moindre efficacité étaient encore opérationnelles, le nom a été retenu. Elle utilise une monture de type azimut-élévation, opérant des rotations à la vitesse de 0.4 degrés par seconde. Les avancées technologiques apportées par cette antenne sont le cornet double-bande ne nécessitant pas de miroir dichroïque (coûteux en termes de pertes), et un procédé de fabrication des surfaces amélioré permettant d'augmenter l'efficacité.

Concernant les surfaces, la forme du réflecteur secondaire n'est plus un parfait hyperboloïde. Il est déformé (cette technique s'appelle le shaping) de telle sorte que l'illumination y soit plus uniforme. Un corolaire indésirable est que la distribution de phase sur l'hyperboloïde n'est plus uniforme. On corrige cela en modifiant aussi la surface du paraboloïde, d'où finalement une distribution uniforme en amplitude et phase. L'antenne HEF est la première du réseau Deep Space à utiliser le shaping des surfaces. Pour ces opérations, le système global a été optimisé pour fonctionner en bande X, au détriment des performances en bande S.

Deux chemins sont prévus, selon que l'antenne fonctionne simultanément avec les polarisations circulaires droite et gauche, ou uniquement avec l'une d'entre elles. La première configuration utilise un duplexeur et présente une température de bruit supérieure. Par ailleurs, deux amplificateurs faible bruit sont installés, l'un de type MASER à rubis et l'autre de type à base de transistor HEMT.

Antenne de 34 m à guide d'onde (BWG)[modifier | modifier le code]

L'antenne de 34 m BWG, dans le complexe de Madrid

L'antenne de 34 m BWG Beam Wave Guide[5],[10] est la dernière conception en date pour le réseau Deep Space. Elle reprend les principales caractéristiques de l'antenne HEF. Le cornet est par contre délocalisé du point focal de l'hyperboloïde vers une salle en sous-sol ; l'onde est alors guidée par des miroirs d'environ 2,5 mètres de diamètre. L'avantage principal est que le refroidissement cryogénique est largement facilité puisqu'il n'a plus besoin d'être placé sur l'antenne elle-même. Il en va de même pour la maintenance. D'autre part, la pluie ne peut plus tomber dans le cornet, ce qui pouvait dégrader les performances. Cette nouvelle architecture a été l'occasion d'ajouter l'émission / réception en bande Ka : le procédé de fabrication des surfaces est suffisamment maîtrisé pour garantir la précision nécessaire.

Modulations[modifier | modifier le code]

L'organisation chargée de proposer les modulations utilisées dans les missions spatiales est le Consultative Committee for Space Data Systems[12]. À l'heure actuelle, les modulations utilisées pour une communication Terre - sonde à faible et moyen débits (inférieur à 2 Mb/s) sont des modulations de phase à deux ou quatre états (BPSK, QPSK ou OQPSK)[13]. Le signal peut contenir ou non une porteuse résiduelle.

Pour des communications à haut débit (supérieur à 2 Mb/s), l'une des modulations préconisées est le Gaussian Minimum Shift Keying (GMSK) [14].

Débits[modifier | modifier le code]

Pour une configuration (sonde spatiale, antenne terrestre) donnée, le débit atteignable lors d'une communication entre la Terre et la sonde dépend notamment de la distance Terre - Sonde (via les pertes en espace libre, voir l'équation des télécommunications), de la fréquence utilisée, de la modulation, du codage correcteur et des conditions météorologiques. À titre d'exemple, le débit pour les communications en bande X, liaison downlink (télémétrie), entre Mars Reconnaissance Orbiter et une antenne de 34 m du réseau Deep Space peut atteindre 5.2 Mb/s[15].

Développements futurs[modifier | modifier le code]

Le futur du réseau Deep Space n'est pas dans l'augmentation du diamètre des antennes, mais plutôt dans la mise en réseau d'antennes de diamètres plus petits[16]. En revanche, l'augmentation de la fréquence est toujours d'actualité.

Mise en réseau[modifier | modifier le code]

Il est question pour le futur du réseau Deep Space de mettre en place 3 sites de 400 antennes de 12 m de diamètre en bande X et bande Ka. Le but visé est d'obtenir un facteur de mérite équivalent 10 fois supérieur à celui des antennes de 70 m actuelles mises en réseau[17].

Communications optiques[modifier | modifier le code]

L'autre possibilité pour augmenter le débit est d'avoir recours à des fréquences plus élevées. Le passage de la bande S à la bande X, puis l'actuel passage de la bande X vers la bande Ka en sont des exemples. La prochaine étape envisagée est de faire un saut jusque dans les fréquences optiques[18] (soit, par rapport à la bande Ka, des fréquences environ 10 000 fois supérieures pour une longueur d'onde de 1 \mum). Outre l'augmentation du débit liée à la montée en fréquence, les longueurs d'onde optiques offrent une diffraction bien moindre que celles utilisées jusqu'à présent : le faisceau s'étale moins et l'on récupère donc mieux l'énergie (pour un faisceau gaussien, le faisceau diverge comme un cône d'angle total 2 \lambda / \pi w_0 avec w_0 la largeur à l'origine).

Les pertes atmosphériques sont le résultat à la fois du blocage par les nuages et de l'absorption par les molécules. Si le second phénomène amène une atténuation à peu près constante en condition de ciel clair (il ne dépend que de la répartition des molécules dans la composition totale), le premier est sujet à des changements et peut même couper complètement la transmission. Pour s'affranchir de ces pertes atmosphériques, il a été envisagé de placer des lasers en orbite pour communiquer avec les sondes spatiales. Cependant, cette technique n'était pas financièrement compétitive face à un ensemble de stations redondantes au sol assurant une diversité par rapport à la couverture nuageuse[18]. De nombreuses questions sont encore à l'étude, comme la sensibilité des récepteurs, la puissance des lasers, la précision de pointage, les modulations et codes correcteurs adaptés, les protocoles pour retransmettre en cas de blocage du signal ou la sécurité liée aux lasers.

Alternative européenne[modifier | modifier le code]

L'Agence spatiale européenne dispose de son propre réseau ESTRACK qui comprend pour les télécommunications avec ses sondes spatiales et missions scientifiques lointaines trois antennes de 35 m de diamètre  : New Norcia en Australie depuis 2002 [19], Cebreros en Espagne depuis 2005 [20] et Malargue en Argentine inaugurée en 2013. Ces antennes espacées de 120° permettent d'assurer une communication avec une sonde spatiale 24h/24. PL'Agence spatiale européenne utilise ponctuellement les antennes du réseau Deep Space et prête main forte si nécessaire au Deep Space Network.

Notes et références[modifier | modifier le code]

  1. (en) The Evolution of Technology in the Deep Space Network: Arraying of antennas
  2. a et b (en) Deep Space Communications and Navigation Series, Volume 1 : Radiometric Tracking Techniques for Deep-Space Navigation
  3. (en) Deep Space Communications and Navigation Series, Volume 5 : Antenna Arraying Techniques in the Deep Space Network
  4. (en) Site de l'Union internationale des télécommunications
  5. a, b et c (en) Deep Space Communications and Navigation Series, Volume 4 : Large Antennas of the Deep Space Network
  6. a, b, c, d, e, f, g, h, i et j (en) Deep Space Network Status
  7. a, b et c (en) 70-m Subnet Telecommunications Interfaces
  8. a et b (en) 26-m Subnet Telecommunications Interfaces
  9. a, b, c et d (en) 34-m HEF Subnet Telecommunications Interfaces
  10. a, b, c, d et e (en) 34-m BWG Antennas Telecommunications Interfaces
  11. Atmospheric and Environmental Effects
  12. (en) Consultative Committee for Space Data Systems
  13. (en) Deep Space Communications and Navigation Series, Volume 3 : Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communications
  14. (en) CCSDS Recommendations for Space Data System Standards : RADIO FREQUENCY AND MODULATION SYSTEMS PART 1 : EARTH STATIONS AND SPACECRAFT
  15. (en) Mars Reconnaissance Orbiter Telecommunications
  16. (en) The DSN Array
  17. (en)Durgadas S Bagri, Joseph I Statman, Mark S. Gatti, « Operation's Concept for Array-based Deep Space Network », IEEEAC, no 1050 (Version 05),‎ Updated January 1, 2005
  18. a et b (en) Deep Space Communications and Navigation Series, Volume 7 : Deep Space Optical Communications
  19. (en) Stardust tests new ESA deep-space ground station in Australia
  20. (en) ESA antennas in Spain

Bibliographie[modifier | modifier le code]

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]