Radioastronomie

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Le very Large Array près de Socorro (Nouveau-Mexique) aux États-unis.

La radioastronomie est une branche de l'astronomie traitant de l'observation du ciel dans le domaine des ondes radio. C'est une science relativement jeune qui a fait ses débuts dans les années 1930.

Historique[modifier | modifier le code]

Karl Jansky découvre en 1933 un signal radio avec une période de 23 heures 56 minutes, soit un jour sidéral, la période caractéristique du passage des étoiles fixes. C'est le premier signal radio d'origine extra-terrestre capté sur Terre. En 1937, Grote Reber, n'ayant pas réussi à se faire engager dans l'équipe de Jansky, construit un radiotélescope à ses propres frais pour explorer l'espace dans le domaine radio, en amateur.

Après la Seconde Guerre mondiale, les recherches commencent sur une plus grande échelle avec du matériel militaire recyclé (radars). En France, à partir de 1947 Yves Rocard avec deux antennes d´origine allemande de 7,5 m de diamètre crée un service d´observation dirigé par Jean-François Denisse. En 1952 il obtient les moyens pour construire un plus grand observatoire la Station de radioastronomie de Nancay (Cher) avec 32 radiotélescopes alignés, inaugurée en 1956.

Le 25 mars 1951, Harold Ewen et Edward Purcell détectent la raie 21 cm de l'hydrogène neutre dans la Voie lactée avec une antenne cornet.

En 1963, Arno Allan Penzias et Robert Woodrow Wilson découvrent le rayonnement fossile du Big Bang prévu par George Gamow en essayant d'éliminer un bruit de fond dans leur équipement de transmission.

En 1965 le fond diffus cosmologique est découvert ; Georges Lemaître l'avait prédit dans sa théorie de l'explosion primitive, dans son article (en français) adressé à Sir Eddington, le définit comme l'« éclat disparu de la formation des mondes », le reliant à la théorie de l'explosion primordiale; ce que Fred Hoyle, partisan de la théorie "stationnaire", avait caricaturé en désignant par ce vocable du big bang qui est devenu ainsi le symbole de la théorie de l'expansion de l'univers. La discipline de la radioastronomie prend un essor inégalé dans l'histoire de l'astronomie.

En 1967, Jocelyn Bell Burnell détecte le premier pulsar, mais c'est son directeur de thèse, Antony Hewish, qui reçoit en 1974 le prix Nobel de physique pour son apport à la radioastronomie — ce qui déclenche une controverse (en)[1].

Radioastronomie[modifier | modifier le code]

Afin d'obtenir suffisamment de signal, certaines antennes sont gigantesques, par exemple le radiotélescope d'Arecibo a un diamètre de 305 mètres. Pour obtenir une résolution fine, on utilise des réseaux d'antennes et même des Very Large Array.

Comme pour l'astronomie optique, il existe des radioastronomes amateurs.

Bandes de radioastronomie[modifier | modifier le code]

Les bandes dédiées à la radioastronomie ont des assignations spécifiques pour être utilisées par ce service de radioastronomie[2].

Ces fenêtres radio donnent accès à divers corps célestes car les répartitions des bandes protègent des brouillages d’autres services[3].

Bandes ITU Types d’observation
13,36 MHz à 13,41 MHz Soleil, Jupiter
25,55 MHz à 25,67 MHz Soleil, Jupiter
37,5 MHz à 38,25 MHz Jupiter
73 MHz à 74,6 MHz Soleil
150,05 MHz à 153 MHz Continuum, pulsar, Soleil
322 MHz à 328,6 MHz Continuum, deutérium
406,1 MHz à 410 MHz Continuum
608 MHz à 614 MHz VLBI
1 330 MHz à 1 400 MHz Raie HI red-shiftée
1 400 MHz à 1 427 MHz Raie HI
1 610,6 MHz à 1 613,8 MHz Raies OH
1 660 MHz à 1 670 MHz Raies OH
1 718,8 MHz à 1 722,2 MHz Raies OH
2 655 MHz à 2 700 MHz Continuum, HII
3 100 MHz à 3 400 MHz Raies CH
4 800 MHz à 5 000 MHz VLBI, HII, raies H2CO et HCOH
6 650 MHz à 6 675,2 MHz CH3OH, VLBI
10,60 GHz à 10,70 GHz Quasar, raies H2CO, Continuum
14,47 GHz à 14,50 GHz Quasar, raies H2CO, Continuum
15,35 GHz à 15,40 GHz Quasar, raies H2CO, Continuum
22,01 GHz à 22,21 GHz Raie H2O red-shiftée
22,21 GHz à 22,5 GHz Raies H2O
22,81 GHz à 22,86 GHz Raies NH3, HCOOCH3
23,07 GHz à 23,12 GHz Raies NH3
23,6 GHz à 24,0 GHz Raie NH3, Continuum
31,3 GHz à 31,8 GHz Continuum
36,43 GHz à 36,5 GHz Raies HC3N, OH
42,5 GHz à 43,5 GHz Raie SiO
47,2 GHz à 50,2 GHz Raies CS, H2CO, CH3OH, OCS
51,4 GHz à 59 GHz
76 GHz à 116 GHz Continuum, raies moléculaires
123 GHz à 158,5 GHz Raies H2CO, DCN, H2CO, CS
164 GHz à 167 GHz Continuum
168 GHz à 185 GHz H2O, O3, multiples raies
191,8 GHz à 231,5 GHz Raie CO a 230.5 GHz
241 GHz à 275 GHz Raies C2H, HCN, HCO+
275 GHz à 1 000 GHz Continuum, Raies moléculaires

Notes et références[modifier | modifier le code]

  1. Sur cette controverse on lira avec intérêt ces deux excellents articles en français :
    1. Astronomie au féminin Les deux dernières pages de cet article de 21 pages très documenté sur le "machisme" scientifique, par Yaël Nazé, astrophysicienne belge, sont consacrés à cette découverte de Jocelyn Bell et à la controverse.
    2. Une petite guerre des étoiles Une interview de Jocelyn Bell en 2007 où elle relate son sentiment mitigé 33 ans plus tard, partagée entre une vive amertume et l'envie d'oublier en raison de son excellente carrière qui a suivi.
  2. Recommandation de l'Union internationale des télécommunications
  3. Bandes dédiées à la radioastronomie, page 24 Chapitre 1 : Introduction à la Radioastronomie

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]