Loi de Henry

Un article de Wikipédia, l'encyclopédie libre.

En physique, et plus particulièrement en thermodynamique, la loi de Henry, établie empiriquement par le physicien britannique William Henry en 1803[1], énonce que[2],[3] :

« À température constante et à saturation, la pression partielle dans la phase vapeur d'un soluté volatil est proportionnelle à la fraction molaire de ce corps dans la solution liquide. »

En pratique, elle ne s'applique qu'aux faibles concentrations du soluté (fraction molaire inférieure à 0,05[3]) et à des pressions de moins de 10 bar (domaine d'application de la loi des gaz parfaits). Le soluté peut être un gaz dissout ou plus généralement tout corps volatil très faiblement soluble ou très dilué. Elle n'est également appliquable qu'à des mélanges binaires, ne contenant qu'un seul soluté et un seul solvant. Par extension à l'aide de coefficients de fugacité et d'activité elle peut être appliquée à des mélanges multicomposants réels. Le pendant de la loi de Henry pour les solvants est la loi de Raoult.

Elle est utilisée dans de nombreux domaines de la chimie, de la physique et de la météorologie.

Énoncé, définitions et démonstration[modifier | modifier le code]

Énoncé de la loi de Henry[modifier | modifier le code]

On considère une solution liquide constituée d'un soluté dissout dans un solvant . La loi de Henry relie la pression partielle du soluté en phase gazeuse à sa fraction molaire en phase liquide à l'équilibre liquide-vapeur selon[2],[3] :

Loi de Henry
pression partielle du soluté dans le solvant  :

avec les notations :

  • la pression totale du mélange ;
  • la pression partielle du soluté , par définition  ;
  • la constante de Henry du soluté dans le solvant , aux pression et température du mélange ; la constante de Henry a la dimension d'une pression ; est la notation recommandée par le Green Book de l'Union internationale de chimie pure et appliquée (IUPAC)[4], on trouve également , voire dans la littérature ;
  • la fraction molaire du soluté dans la phase vapeur ;
  • la fraction molaire du soluté dans la phase liquide.

La littérature utilise parfois l'inverse de la constante de Henry définie précédemment, , et l'appelle également constante de Henry. Sa dimension est alors l'inverse de celle d'une pression, et la loi de Henry s'énonce selon[5],[6] :

« À température constante et à saturation, la quantité de gaz dissout dans un liquide est proportionnelle à la pression partielle qu'exerce ce gaz sur le liquide. »

et s'écrit sous la forme :

Loi de Henry :

Il existe aussi d'autres formes de la loi de Henry, écrites non pas en fonction de la fraction molaire du soluté mais de sa concentration molaire ou de sa molalité. Les lecteurs de littérature spécialisée doivent être attentifs à noter quelle version de l'équation de la loi de Henry est utilisée[7]. Voir le paragraphe Constantes de Henry pour des gaz dissouts dans l'eau.

La loi de Henry établissant l'état d'équilibre liquide-vapeur d'une solution liquide, les solutés considérés ici sont des espèces chimiques capables de passer en phase gaz dans les conditions de pression et de température considérées, c'est-à-dire des corps volatils, ce qui exclut les solutés solides tels les sels. Un soluté répondant à la loi de Henry est typiquement un corps gazeux dans les conditions de température et pression du mélange : soit un fluide supercritique (oxygène, azote pour un mélange dans les CNTP), soit un fluide subcritique ayant une pression de vapeur saturante supérieure à la pression du mélange (propane, butane pour un mélange dans les CNTP). Cependant, un soluté répondant à la loi de Henry peut être également un fluide subcritique liquide (ayant une pression de vapeur saturante inférieure à la pression du mélange, comme le pentane pour un mélange dans les CNTP) présent en faible quantité dans la solution, soit parce qu'il est fortement dilué, soit parce qu'il est peu soluble. De façon générale, un soluté répondant à la loi de Henry est donc un corps volatil dans les conditions du mélange et dont la fraction molaire en phase liquide est faible, soit . Un solvant est un corps dont la fraction molaire en phase liquide est très supérieure à celle du soluté, soit , se comportant quasiment comme un corps pur, soit . La relation de Duhem-Margules impose que si l'équilibre liquide-vapeur d'un soluté répond à la loi de Henry, celui du solvant répond à la loi de Raoult.

L'équilibre liquide-vapeur déterminé par la loi de Henry est un état stable, appelé état de saturation du solvant par le soluté. Dans les conditions de pression et température données, le solvant peut contenir plus de soluté que la quantité déterminée par la loi de Henry, mais il s'agit alors d'un état d'équilibre instable dit de sursaturation. Dans ce cas la moindre perturbation (choc sur le récipient contenant le liquide, introduction d'une poussière formant un site de nucléation pour les bulles de gaz, fluctuation de pression ou de température, etc.) peut provoquer le dégazage de l'excès de soluté dissout jusqu'à l'établissement de l'état stable dicté par la loi. De même, la quantité du soluté dissout peut être inférieure à celle déterminée par la loi de Henry : il y a sous-saturation. Dans ce cas, si le soluté est présent en phase gaz, la phase liquide absorbe du soluté gazeux jusqu'à atteindre l'équilibre stable. La fraction déterminée par la loi de Henry est donc la fraction molaire maximale de soluté que peut contenir la phase liquide de façon stable : la fraction est la solubilité du soluté dans le solvant dans les conditions de pression et de température données.

Constante de Henry[modifier | modifier le code]

Les définitions et formules suivantes ne sont valables que pour un mélange binaire comprenant un unique soluté et un unique solvant .

La constante de Henry est définie rigoureusement en thermodynamique à partir de la fugacité.

Contrairement à ce que peut laisser entendre le terme de constante, la constante de Henry dépend de la pression et de la température. En revanche, elle ne dépend pas de la composition du mélange. La constante de Henry dépend également de la nature du soluté et du solvant  ; ceci implique qu'elle doit être déterminée pour chaque couple « soluté - solvant  » et n'est pas valable si l'un de ces deux corps est considéré dans un mélange binaire autre que celui pour lequel elle a été déterminée (par exemple le soluté avec un solvant autre que le solvant ).

En pratique, la constante de Henry est déterminée expérimentalement.

Définition thermodynamique[modifier | modifier le code]

Évolution de la fugacité en fonction de la fraction molaire à pression et température constantes[8],[9].

En thermodynamique, à pression et température constantes, la fugacité d'une espèce chimique (soluté) en phase liquide, en présence d'une deuxième espèce (solvant), possède deux limites, avec la fraction molaire du corps dans le mélange :

  • à dilution infinie :  ;
  • pour le corps pur :  ;

avec la fugacité du corps à l'état de liquide pur. Cette fugacité peut être fictive si le corps est gazeux à l'état pur dans les conditions de pression et température données.

L'évolution de la fugacité en fonction de la composition est encadrée par deux lois linéaires[8],[9] :

Loi de Henry - aux faibles concentrations :
Loi de Lewis et Randall - aux fortes concentrations :

La constante de Henry n'est pas la fugacité du soluté à dilution infinie dans le solvant . La fugacité tend vers zéro lorsque tend vers zéro. Aussi la constante de Henry est-elle définie comme étant la limite lorsque la quantité de soluté dissout en phase liquide s'annule[4],[10],[11],[12] :

Constante de Henry : à pression et température constantes.

avec :

  • la fugacité du soluté dans le mélange liquide ;
  • la constante de Henry du soluté dans le solvant , aux pression et température du mélange ;
  • la fraction molaire du soluté dans le mélange liquide ;
  • la fraction molaire du solvant dans le mélange liquide ().

En application de la règle de L'Hôpital, la constante de Henry peut également être définie par[4],[11],[12] :

Constante de Henry :

La constante de Henry est donc la pente de la fugacité à dilution infinie.

Quelle que soit la concentration du soluté , sa fugacité réelle peut être exprimée en fonction d'un coefficient d'activité à partir des deux lois linéaires idéales définies précédemment[12],[13] :

en posant :

  • le coefficient d'activité défini par rapport à la loi de Henry ;
  • le coefficient d'activité défini par rapport à la loi de Lewis et Randall.

Puisque les deux limites de la fugacité sont définies, on a les limites des coefficients d'activité[12],[13] :

  • à dilution infinie :  ;
  • pour le corps pur : .

On pose à dilution infinie[12],[13] :

Coefficient d'activité à dilution infinie :

Par conséquent, à dilution infinie on a :

d'où les relations[13],[14] :

Constante de Henry :

et :

La première relation permet de déterminer si l'on connait . Inversement, connaissant on peut extrapoler si le soluté n'existe pas à l'état de liquide pur dans les conditions de pression et température données. La deuxième relation montre que les deux coefficients d'activité et ne sont pas indépendants, bien que liés à des états de référence différents. La loi de Henry, quelle que soit sa forme, peut ainsi être employée avec les modèles classiques développés pour la loi de Lewis et Randall (Margules, Van Laar (en), Wilson[13], NRTL (en), UNIQUAC, UNIFAC, COSMOSPACEetc.).

Dépendance à la pression[modifier | modifier le code]

La fugacité du soluté dans le mélange liquide varie en fonction de la pression selon :

avec :

  • le volume de la phase liquide ;
  • le volume molaire partiel du soluté dans le mélange liquide ;
  • la quantité du soluté dans le mélange liquide ;
  • la quantité du solvant dans le mélange liquide.

Quelle que soit la fraction molaire du soluté , la dérivée partielle étant effectuée à composition constante, on peut écrire :

En passant à la limite de la dilution infinie :

La référence à la composition constante disparait dans la dérivée partielle de la constante de Henry, puisque celle-ci ne dépend pas de la composition. On pose pour le volume molaire partiel[15] :

Volume molaire partiel du soluté à dilution infinie :

La constante de Henry dépend par conséquent de la pression selon[15],[16] :

Dépendance de la constante de Henry à la pression

avec :

  • la pression ;
  • la température ;
  • le volume molaire partiel du soluté à dilution infinie dans le solvant  ;
  • la constante universelle des gaz parfaits.

En intégrant cette relation entre une pression de référence et la pression  :

La pression de référence est le plus souvent prise égale à la pression de vapeur saturante du solvant à la température du mélange : . En conséquence, on peut réduire la constante d'intégration à une fonction de la température seule : . La constante de Henry est alors exprimée sous la forme[16],[13],[17] :

avec le facteur de Poynting[13],[17] :

Facteur de Poynting :

Le volume molaire partiel représente la variation de volume de la solution liquide due à la dissolution d'une mole de soluté dans une quantité infinie de solvant . Il peut être déterminé expérimentalement par extrapolation de établi pour plusieurs concentrations de soluté dans le mélange liquide ; il existe également des corrélations telles que celle de Brelvi-O'Connell[18]. Les liquides étant peu compressibles, le volume molaire partiel peut être considéré comme ne dépendant pas de la pression, soit , on obtient :

Il peut être aussi bien positif (la dissolution du gaz provoque une dilatation du liquide) que négatif (la dissolution du gaz provoque une contraction du liquide). Si le volume molaire partiel est positif alors la constante de Henry augmente avec la pression .

Dépendance à la température[modifier | modifier le code]

La fugacité du soluté dans le mélange liquide varie en fonction de la température selon :

avec :

  • l'enthalpie de la phase liquide ;
  • l'enthalpie molaire partielle du soluté dans le mélange liquide ;
  • l'enthalpie molaire du soluté à l'état de gaz parfait pur à  ;
  • la quantité du soluté dans le mélange liquide ;
  • la quantité du solvant dans le mélange liquide.

Quelle que soit la fraction molaire du soluté , la dérivée partielle étant effectuée à composition constante, on peut écrire :

En passant à la limite de la dilution infinie :

La référence à la composition constante disparait dans la dérivée partielle de la constante de Henry, puisque celle-ci ne dépend pas de la composition. On pose pour l'enthalpie molaire partielle[15],[19] :

Enthalpie molaire partielle à dilution infinie du soluté  :

c'est-à-dire l'enthalpie molaire partielle du soluté à dilution infinie dans le solvant liquide. L'enthalpie molaire du gaz parfait pur ne dépendant pas de la composition, elle reste inchangée lors du passage à la limite et on obtient :

on pose pour les enthalpies molaires partielles[15],[19] :

Enthalpie de dissolution :

avec :

  • l'enthalpie molaire partielle du soluté à dilution infinie dans le solvant liquide à  ;
  • l'enthalpie molaire du soluté à l'état de gaz parfait pur à .

La constante de Henry dépend par conséquent de la température selon[15],[19] :

Dépendance de la constante de Henry à la température

avec :

  • la pression ;
  • la température ;
  • l'enthalpie de dissolution[20] du soluté dans le solvant à  ;
  • la constante universelle des gaz parfaits.

Si l'on considère l'enthalpie de dissolution comme constante, alors, en intégrant cette relation entre une température de référence et la température [19] :

Cette forme n'est applicable que sur des plages de température relativement étroites. Elle est généralisée au moyen de deux constantes et empiriques spécifiques du couple « soluté - solvant  »[21] :

La littérature utilise parfois l'inverse de la constante de Henry définie précédemment, (cette notation prête à confusion avec celle de l'enthalpie de dissolution [7]), aussi trouve-t-on également les relations[7] :

L'enthalpie de dissolution est la chaleur produite par la dissolution d'une mole de soluté à l'état de gaz parfait pur dans une quantité infinie de solvant à l'état liquide[19]. Elle est déterminée expérimentalement par calorimétrie en extrapolant la chaleur de dissolution d'une mole de soluté dans plusieurs quantités de solvant. On peut considérer l'enthalpie molaire partielle d'un corps dans un mélange liquide, ici , comme indépendante de la pression, les liquides étant peu compressibles. De même, en vertu de la deuxième loi de Joule, l'enthalpie molaire d'un gaz parfait, ici , ne dépend pas de la pression. Ainsi, il peut être considéré que l'enthalpie de dissolution ne dépend que de la température : . Elle peut être négative (dissolution exothermique, l'opération de dissolution dégage de la chaleur), positive (dissolution endothermique, l'opération de dissolution absorbe de la chaleur) ou nulle (dissolution athermique)[19]. Pour la plupart des gaz à température ambiante la dissolution est exothermique, soit , par conséquent augmente avec une diminution de et la constante de Henry augmente avec la température .

Calcul théorique par une équation d'état[modifier | modifier le code]

La constante de Henry est définie à pression et température constantes par la limite :

Le coefficient de fugacité du soluté en phase liquide est défini par la relation avec la fugacité  :

Coefficient de fugacité :

On obtient[22],[14] :

à pression et température constantes

Si l'on dispose d'une équation d'état d'une phase liquide donnant la pression en fonction du volume , de la température et de la composition , soit , le coefficient de fugacité se calcule selon :

avec la quantité du soluté et la quantité du solvant . Il est donc possible de calculer la constante de Henry à partir d'une équation d'état de la phase liquide. Toutefois, les équations d'état telles que les équations d'état cubiques sont généralement développées pour représenter des phases gazeuses et représentent assez mal les phases liquides. Cette démarche reste donc théorique ; en pratique la constante de Henry est plutôt déterminée expérimentalement sous des formes empiriques présentées au paragraphe Formes usuelles. La relation établie ci-dessus et l'exemple ci-dessous montrent cependant la dépendance de la constante de Henry aux propriétés du solvant et du soluté , et aux interactions entre les deux constituants.

Exemple - Avec l'équation d'état de van der Waals[22].

L'équation d'état de van der Waals donne :
À dilution infinie ( et ) on a :
Le volume molaire de la solution liquide tend vers celui du solvant liquide pur, calculable par l'équation d'état : . On obtient, à pression et température constantes :
Lorsque la pression tend vers la pression de vapeur saturante du solvant à la température , l'équilibre liquide-vapeur tend vers celui du solvant pur (état de saturation) ; le volume molaire tend vers celui du solvant liquide pur à saturation. On peut donc calculer la constante de Henry dans les conditions de saturation du solvant [22] :
Les liquides étant peu compressibles, le volume molaire du solvant liquide pur est assimilable à celui du solvant liquide pur à saturation : . On peut alors calculer avec le facteur de Poynting :
avec :
  • et  ;
  • et  ;
  • un coefficient d'interaction binaire ;
  • et les pressions critiques respectives du soluté et du solvant  ;
  • la pression de vapeur saturante du solvant à la température  ;
  • et les températures critiques respectives du soluté et du solvant  ;
  • le volume molaire de la solution liquide à la pression et à la température  ;
  • le volume molaire du solvant liquide pur à et  ;
  • le volume molaire du solvant liquide pur à saturation, soit à et .
Cet exemple montre la dépendance de la constante de Henry aux propriétés du solvant et du soluté , et aux interactions entre le soluté et le solvant par l'intermédiaire du coefficient d'interaction binaire [22]. La constante de Henry est donc spécifique du couple « soluté - solvant  » et ne peut être utilisée pour d'autres mélanges binaires ; par exemple, elle n'est pas valable si le soluté est dissout dans un solvant autre que .

Formes usuelles[modifier | modifier le code]

La constante de Henry est souvent utilisée sous la forme obtenue par intégration par rapport à la pression[17] :

Forme usuelle de la constante de Henry

La correction de Poynting ne devient significative qu'aux hautes pressions. Pour des pressions de l'ordre de grandeur de la pression atmosphérique, le facteur de Poynting est négligeable : . La constante de Henry peut alors être considérée comme indépendante de la pression et être approchée par :

Aux basses pressions :

Les formes suivantes sont souvent utilisées pour la dépendance à la température[21],[23] :

avec , , et des constantes empiriques spécifiques du couple « soluté - solvant  ». L'enthalpie de dissolution est alors exprimée sous les formes respectives :

Démonstration de la loi de Henry[modifier | modifier le code]

Lorsque l'équilibre liquide-vapeur est atteint, les fugacités du soluté sont homogènes entre les deux phases :

avec :

  • la fugacité du soluté en phase gaz (vapeur) ;
  • la fugacité du soluté en phase liquide.

Aux basses pressions (moins de 10 bar), le gaz se comporte comme un mélange de gaz parfaits, et la fugacité du soluté en phase gaz peut être assimilée à sa pression partielle :

D'autre part, par définition, aux faibles concentrations la fugacité du soluté dans le solvant en phase liquide suit approximativement la loi linéaire :

Ainsi, aux basses pressions et aux faibles concentrations, l'équilibre liquide-vapeur du soluté est approché par la relation :

qui est la loi de Henry. Aux fortes concentrations, la fugacité en phase liquide suit approximativement la loi de Lewis et Randall : aux basses pressions et aux fortes concentrations ceci conduit à la loi de Raoult qui s'applique aux solvants.

Limites et extensions de la loi de Henry[modifier | modifier le code]

Limites de la loi idéale[modifier | modifier le code]

Conditions de pression[modifier | modifier le code]

La loi de Henry n'est valable que si la phase gaz peut être considérée comme un mélange de gaz parfaits. Autrement dit, elle ne s'applique qu'à des pressions partielles de soluté de l'ordre de la pression atmosphérique (moins de 10 bar), dans le domaine d'application de la loi des gaz parfaits[24].

Composition de la phase liquide[modifier | modifier le code]

Concentration du soluté

La loi de Henry est une loi limitante qui ne s'applique qu'aux solutions suffisamment diluées. La gamme de concentrations à laquelle elle s'applique se restreint à mesure que le système diverge par rapport au comportement idéal ; pour faire simple, cela signifie à mesure que le soluté a un comportement chimiquement différent du solvant. Typiquement, la loi de Henry s'applique uniquement si la fraction molaire du soluté est inférieure à 0,03[24] ou 0,05[3].

Présence d'autres solutés

La loi de Henry est établie pour un soluté unique dissout dans un solvant unique. Si le solvant contient plusieurs solutés la constante de Henry est modifiée et dépend de la composition. Ainsi la solubilité d'un gaz dans l'eau de mer est-elle inférieure à celle dans l'eau douce en raison de la compétition entre le gaz dissout et les sels dissouts. La constante de Henry pourra être corrigée selon l'équation empirique de Setchenov[7],[25],[23] :

Équation de Setchenov :

avec :

  • la constante de Henry du soluté dans le solvant en solution avec tous les solutés ;
  • la constante de Henry du soluté dans le solvant en solution avec seul soluté ;
  • le coefficient de Setchenov, qui dépend des solutés et du solvant ;
  • la force ionique ; on trouve aussi cette équation exprimée en fonction de la molalité des sels dissouts[7].
Dissolution réactive

La loi de Henry s'applique uniquement aux solutions dans lesquelles le soluté ne réagit pas chimiquement avec le solvant. Un exemple usuel dans lequel le gaz réagit avec le solvant est le dioxyde de carbone (CO2), qui forme partiellement, par réaction avec l'eau, de l'acide carbonique (H2CO3), qui lui-même, en fonction du pH de l'eau, forme les ions hydrogénocarbonate (HCO3) et carbonate (CO32−). En conséquence, plus le pH de l'eau est basique, plus l'on peut dissoudre de dioxyde de carbone dans l'eau.

Cas des solvants, loi de Raoult[modifier | modifier le code]

Un solvant est un corps présent dans une solution liquide ayant une fraction molaire très supérieure à celle d'un soluté , soit . Ce corps peut quasiment être considéré comme pur, soit .

La relation de Duhem-Margules implique que si un soluté suit la loi de Henry, alors le solvant suit la loi de Raoult qui relie sa pression partielle en phase gazeuse à sa fraction molaire en phase liquide à l'équilibre liquide-vapeur selon :

Loi de Raoult :

avec :

  • la pression totale du mélange ;
  • la pression partielle du solvant , par définition  ;
  • la pression de vapeur saturante du composé à la température du mélange ;
  • le facteur de Poynting appliqué au solvant  ;
  • le volume molaire du solvant liquide pur ;
  • la fraction molaire du solvant dans la phase vapeur ;
  • la fraction molaire du solvant dans la phase liquide.

La relation de Duhem-Margules induit également que si l'on néglige la correction de Poynting pour le soluté, alors elle est également négligeable pour le solvant, soit .

Extensions aux mélanges réels[modifier | modifier le code]

La loi de Henry constitue une base pour calculer les équilibres liquide-vapeur des mélanges réels, non idéaux, entre autres à des concentrations et des pressions plus fortes que celles données précédemment. À l'équilibre liquide-vapeur, on a pour tout corps , soluté ou solvant, l'égalité des fugacités en phase vapeur et en phase liquide, soit :

La fugacité réelle en phase gaz s'écrit à l'aide d'un coefficient de fugacité corrigeant la loi des gaz parfaits. La fugacité réelle en phase liquide s'écrit à partir de la fugacité à l'état de corps pur à l'aide d'un coefficient d'activité corrigeant la loi de Lewis et Randall :

Mélanges binaires[modifier | modifier le code]

On considère un mélange binaire ne comprenant qu'un unique soluté et un unique solvant .

Lois des équilibres binaires[modifier | modifier le code]

La fugacité (fictive si le soluté est un gaz) du soluté à l'état de liquide pur est donnée par la relation[13] :

Pour le soluté , l'équilibre liquide-vapeur est calculé par l'extension de la loi de Henry :

Extension de la loi de Henry aux mélanges binaires réels
pour le soluté  :

Pour le solvant , l'équilibre liquide-vapeur est calculé par l'extension de la loi de Raoult :

Extension de la loi de Raoult aux mélanges binaires réels
pour le solvant  :

En application du théorème d'Euler, le volume molaire de la phase liquide vaut :

Le plus souvent, les modèles d'activité ne dépendent pas de la pression, le volume molaire est alors calculé selon le modèle idéal.

Lois des équilibres binaires idéaux[modifier | modifier le code]

Si le mélange liquide est idéal, alors . Pour des pressions proches de la pression atmosphérique (moins de 10 bar) le gaz se comporte comme un gaz parfait, soit . Pour un mélange liquide binaire idéal aux basses pressions on retrouve par conséquent les lois idéales :

Loi de Henry
pour le soluté  :

et :

Loi de Raoult
pour le solvant  :

Le volume molaire de la phase liquide idéale vaut :

Équations de Krichevsky-Kasarnovsky et Krichevsky-Ilinskaya[modifier | modifier le code]

En supposant que le volume molaire ne dépend pas de la pression, on développe le facteur de Poynting . On obtient, pour tout soluté  :

Si le coefficient d'activité suit le modèle de Margules à un paramètre :

avec la fraction molaire du solvant dans la phase liquide (avec ). On obtient l'équation de Krichevsky-Ilinskaya[26],[27] :

Équation de Krichevsky-Ilinskaya

que l'on trouve aussi, en écrivant le modèle de coefficient d'activité selon , sous la forme[28],[29],[30],[23] :

Équation de Krichevsky-Ilinskaya

Si le mélange liquide est idéal, soit (d'où ), on obtient l'équation de Krichevsky–Kasarnovsky[16],[27],[31],[32],[23] :

Équation de Krichevsky–Kasarnovsky

L'équation de Krichevsky-Kasarnovsky ne s'emploie que pour de faibles concentrations de soluté (solutions liquides idéales), l'équation de Krichevsky-Ilinskaya est valable pour des concentrations plus fortes. Pour des pressions proches de la pression atmosphérique (moins de 10 bar) le gaz se comporte comme un gaz parfait, la fugacité du soluté en phase vapeur est alors égale à sa pression partielle : . Pour des pressions plus importantes, la fugacité du soluté en phase gaz est calculée à l'aide d'un coefficient de fugacité : . Les équations de Krichevsky-Ilinskaya et Krichevsky-Kasarnovsky sont employées pour calculer des solubilités à haute pression, jusqu'à 1 000 bar environ[31],[33].

Mélanges multicomposants[modifier | modifier le code]

On considère un mélange liquide composé de plusieurs solutés, notés , et plusieurs solvants, notés ou , aux pression et température . Il est possible de calculer l'équilibre liquide-vapeur de ce mélange à partir des données d'équilibre de chacun des couples « soluté - solvant  ».

Lois des équilibres multicomposants[modifier | modifier le code]

On note :

la fugacité du soluté à l'état de liquide pur calculée à partir des propriétés du mélange binaire « soluté - solvant  ». Si le soluté n'existe pas à l'état de liquide pur dans les conditions de pression et température données du mélange, cette fugacité est fictive et sa valeur peut varier selon le solvant .

Pour les mélanges multicomposants, l'état de référence des solutés est l'état de dilution infinie de l'ensemble des solutés simultanément, c'est-à-dire le mélange de solvants en l'absence de tout soluté. On pose[34] (une somme ou est effectuée sur l'ensemble des solvants du mélange, une somme sur l'ensemble des solutés du mélange) :

  • pour tout corps , soluté ou solvant, avec la fraction molaire du corps dans le mélange multicomposant liquide. est la quantité de soluté rapportée à la quantité totale de solvants dans le mélange liquide. est la fraction molaire du solvant dans le mélange liquide des solvants seuls, autrement dit la limite de la fraction molaire du solvant à dilution infinie de tous les solutés du mélange liquide multicomposant ; on a  ;
  • pour tout soluté . est la fugacité du soluté à l'état de liquide pur ; elle est construite par moyenne logarithmique des fugacités pondérée par la composition du mélange de solvants ;
  • pour tout solvant  ; on a .

En présence d'un unique solvant on a pour tout soluté et , soit . Si le soluté existe à l'état de liquide pur dans les conditions de pression et température données, alors n'est pas fictive et pour tout solvant . Si tous les solutés ont une fugacité réelle, alors pour tout solvant . Dans un mélange liquide constitué uniquement de solvants, donc en l'absence de tout soluté, on a également pour tout solvant .

Pour un soluté , l'équilibre liquide-vapeur est calculé par l'extension de la loi de Henry[34] :

Extension de la loi de Henry aux mélanges multicomposants réels
pour un soluté  :

Pour un solvant , l'équilibre liquide-vapeur est calculé par l'extension de la loi de Raoult[34] :

Extension de la loi de Raoult aux mélanges multicomposants réels
pour un solvant  :

En application du théorème d'Euler, le volume molaire de la phase liquide vaut :

Le plus souvent, les modèles de coefficient d'activité ne dépendent pas de la pression, le volume molaire est alors calculé selon le modèle idéal.

Lois des équilibres multicomposants idéaux[modifier | modifier le code]

Comme pour un mélange binaire, la fugacité (fictive pour les gaz) du soluté à l'état de liquide pur est supposée calculée selon la relation :

avec :

  • la constante de Henry du soluté dans le mélange liquide ;
  • le coefficient d'activité du soluté à dilution infinie dans le mélange liquide.

En supposant que le mélange liquide est idéal, soit pour tout soluté et tout solvant , on a pour tout soluté la relation idéale de Krichevsky[34] :

Équation de Krichevsky

et pour tout solvant  :

Pour des pressions proches de la pression atmosphérique (moins de 10 bar) le gaz se comporte comme un gaz parfait, soit . Pour les phases liquides idéales et les basses pressions on a par conséquent les lois idéales :

Loi de Henry étendue aux mélanges multicomposants idéaux
pour un soluté  :

et :

Loi de Raoult étendue aux mélanges multicomposants idéaux
pour un solvant  :

Le volume molaire de la phase liquide idéale vaut :

Application à un mélange ternaire : un soluté et deux solvants[modifier | modifier le code]

On considère un mélange liquide ternaire constitué d'un soluté et de deux solvants, notés et . Soient les coefficients d'activité du soluté à dilution infinie dans chacun des deux solvants et selon le modèle de Margules :

On suppose que l'enthalpie libre molaire d'excès du mélange ternaire est calculable selon l'extension du modèle de Margules[35] :

Les coefficients d'activité des trois corps sont donnés par[34] :

coefficients d'activité

On pose :

À dilution infinie du soluté , soit , on a les limites :

avec l'enthalpie libre molaire d'excès du mélange de solvants en l'absence de soluté .

La fugacité du soluté à l'état de liquide pur est calculée selon[34] :

d'où :

pour le soluté

et la constante de Henry du soluté dans le mélange ternaire :

Ainsi, lorsque le mélange de solvants est idéal, soit et , on retrouve l'équation idéale de Krichevsky.

Pour les deux solvants et on a :

d'où :

pour les deux solvants et

Ces expressions peuvent être étendues à des mélanges contenant plus de solutés et de solvants, avec . Il est alors pratique de négliger les interactions entre solutés si ceux-ci ne sont que faiblement concentrés, soit si et sont deux solutés :

Applications[modifier | modifier le code]

Étude de la solubilité[modifier | modifier le code]

La loi de Henry permet d'établir l'évolution de la solubilité en fonction de la pression et de la température dans ses limites d'application, pour rappel aux basses pressions et faibles solubilités.

En fonction de la pression[modifier | modifier le code]

En dérivant, à température constante, l'expression de la loi de Henry par rapport à la pression, on obtient :

avec le volume molaire partiel du soluté à dilution infinie dans le solvant (voir le paragraphe Constante de Henry - Dépendance à la pression).

Cas de la pression partielle constante

Si la pression partielle