Biomécanique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

La biomécanique est l'exploration des propriétés mécaniques des organismes vivants ainsi que l'analyse des principes d'ingénierie faisant fonctionner les systèmes biologiques. Elle traite des relations existantes entre les structures et les fonctions à tous les niveaux d’organisation du vivant à partir des molécules, comme le collagène ou l’élastine, aux tissus et organes. La biomécanique caractérise les réponses spatio-temporelles des matériaux biologiques, qu'ils soient solides, fluides ou viscoélastiques, à un système imposé de forces et de contraintes internes et externes.

Outre la mécanique classique, la biomécanique fait appel à diverses disciplines et techniques comme la rhéologie, pour étudier le comportement des fluides biologiques comme le sang, la résistance des matériaux, pour modéliser les contraintes subies par les tissus comme le cartilage des articulations ou encore les os, la mécanique du solide pour analyser la motricité et la locomotion, depuis les cellules individuelles aux organismes entiers, ce qui constitue une partie intégrante de la kinésiologie.

Historique[modifier | modifier le code]

L’Antiquité[modifier | modifier le code]

Aristote a écrit le premier livre à propos de la biomécanique, De Motu Animalium, ou Sur le mouvement animaux. Il ne fait pas que voir les corps animaux comme des systèmes mécaniques, mais traite la question comme la différence physiologique entre la performance imaginée d’une action et réellement l’accomplir. Aristote y décrit plusieurs exemples simples de recherches biomécaniques incluant l’investigation des forces qui agissent sur les limbes, l’aérodynamisme des oiseaux et le vol des insectes, l’hydrodynamisme de la nage chez les poissons, et la locomotion dans toutes les formes de vie, allant d’une simple cellule à l’organisme en entier.

Renaissance[modifier | modifier le code]

Probablement que Léonard de Vinci pourrait être reconnu comme le premier vrai biomécanicien, car il a été le premier à étudier l’anatomie dans le contexte mécanique. Il a annualisé la force musculaire comme des lignes connectées toujours en action, et l’insertion et l’étude de la fonction des jonctions. Il a aussi tenté de pasticher des traits animaux dans ses machines. Par exemple, il étudia le vol d’oiseau afin de trouver un moyen par lequel les humains pourraient voler. Puisque le principal moyen de pouvoir mécanique à cette époque était les chevaux, il a étudié leurs systèmes musculaires pour faire le design de machines desquelles il tirerait de meilleurs bénéfices des forces appliquées par cet animal.

Galileo Galilei était intéressé dans la force des os et a suggéré que les os soient creux pour permettre un apport maximum de la force avec un poids minimum.

Au 16e siècle, Descartes a suggéré un système philosophique où tous les systèmes vivants, incluant le corps humain (mais pas l’âme), sont tout simplement des machines contrôlées par les mêmes lois mécaniques, une idée qui a fait beaucoup pour promouvoir l’étude de la biomécanique. Giovanni Alfonso Borelli a embrassé cette idée et a étudié la marche, la course, le saut, le vol d’oiseau et la nage des poissons. Il a pu déterminer la position du centre de gravité de l’humain, calculer et mesurer l’inspiration et l’expiration du volume de l’air, et a démontré que l’inspiration est dirigée par les muscles et l’expiration par l’élasticité des tissus. Borelli a été le premier à comprendre que le levier du système musculo-squelettique grossit le mouvement plus que la force, alors que les muscles produisent beaucoup plus de force que ceux qui résistent au mouvement. Influencé par le travail de Galileo, qui lui a transmis son savoir personnel, il a une compréhension intuitive de l’équilibre statique dans les jonctions variantes du corps humains bien avant que Newton n'ait publié les lois du mouvement.

L’ère Industrielle[modifier | modifier le code]

Au 19e siècle, Étienne-Jules Marey a utilisé la cinématographie pour investiguer scientifiquement la locomotion. Il a ouvert la porte a ¨l’analyse du mouvement¨ moderne en étant le premier à établir une corrélation entre les forces de réaction du sol et les mouvements. En Allemagne, les frères Ernst Heinrich Weber et Wilhelm Eduard Weber ont fait des hypothèses à propos de la marche humaine, mais c’est Christian Wilhelm Braune qui a significativement avancé la science utilisant les avancés récentes de l’ingénierie mécanique. Pendant la même période, l’ingénierie mécanique du matériel a commencé à fleurir en France et en Allemagne sous la demande de la révolution industrielle.

Principes[modifier | modifier le code]

Propriétés mécaniques des biomatériaux[modifier | modifier le code]

On peut caractériser mécaniquement les biomatériaux comme tous les autres au moyen des dimensions usuelles utilisées dans l'étude de la résistance des matériaux : Module de Young, coefficient de Poisson, Tension ultime, etc. Leur particularité se retrouve par contre dans leur grande anisotropie ; les propriétés mécaniques des tissus vivants diffèrent souvent selon l'orientation observée. De plus, au sein d'une même structure, sa composition peut varier et modifier le comportement mécanique local. Le facteur d'échelle est donc important à considérer dans cette discipline.

Système musculo-squelettique[modifier | modifier le code]

Le système est composé de muscles, d'os et des articulations. Les différentes composantes du système sont si bien intégrées qu'il peut être difficile de bien les distinguer (aponévrose, insertions communes, fascias).

Tissu osseux[modifier | modifier le code]

Le tissu osseux est formé de cellules osseuses, les ostéocytes, qui sont logées à l'intérieur de la substance fondamentale osseuse, une substance dure qu'elles élaborent[1]. La substance fondamentale entourant les cellules est composée de lamelles disposées en couches.

Il y a deux variétés de tissu osseux : le tissu osseux spongieux et le tissu osseux compact.

  • Tissu spongieux : Moins dense et plus léger que le compact, les lamelles de substance fondamentale sont disposées en travées qui limitent entre elles des cavités remplies par la moelle osseuse. La disposition des travées ressemble à une structure d'éponge[1].
  • Tissu compact : Dense, épais, homogène et solide, la substance fondamentale y est disposée en lamelles concentriques[1].

Joints et articulations[modifier | modifier le code]

Muscles[modifier | modifier le code]

Mécanique des mouvements[modifier | modifier le code]

Contrairement aux systèmes mécaniques conventionnels, le mouvement "vivant" peut être beaucoup plus complexe. Par exemple, l'articulation de l'épaule qui est habituellement associée à un joint sphérique permet en réalité une translation presque pure de la tête de l'humérus. Les calculs et principes de la physique mécanique sont donc essentiels à la compréhension du mouvement des être vivants et de leurs organes.

Système cardiovasculaire[modifier | modifier le code]

Vaisseaux sanguins[modifier | modifier le code]

Mécanique cardiaque[modifier | modifier le code]

Transport lymphatique[modifier | modifier le code]

Rhéologie des hématocytes[modifier | modifier le code]

Applications[modifier | modifier le code]

La biomécanique est un domaine interdisciplinaire situé à la frontière entre la mécanique physique et les sciences biologiques (du vivant) :

La biomécanique est présente à tous les niveaux de l'étude du vivant :

  • La cellule : échange, transformations, pathologie...
  • Le tissu : croissance, résistance, vieillissement, réparation...
  • L'organe : fonctionnement, pathologie, remplacement...
  • Le système, l'appareil : relations entre les organes au sein d'un système, organisation vis-à-vis des propriétés physiques du milieu extérieur (par exemple, adaptation de l'appareil cardiovasculaire à la gravité).
  • Le corps dans son ensemble : déambulation, posture, ergonomie...

La biomécanique a de nombreuses applications pratiques, notamment en médecine et en sport.

C'est également un domaine actif de recherche scientifique à l'échelle microscopique. C'est alors un sous-domaine de la biophysique. Elle s'intéresse par exemple à la mécanique :

  • des polymères biologiques. L'ADN en particulier a fait l'objet d'expériences spectaculaires. La séquence d'acides aminés affecte les propriétés mécaniques des chaînes, en particulier leurs propriétés de repliement.
  • du cytosquelette. L'application de déformations (par contact direct ou au moyen de pinces optiques) permet de mesurer les coefficients de réponse élastique du cytosquelette.
  • de la membrane. Lors des mouvements cellulaires, ou d'évènements de phagocytose ou d'endocytose, la membrane subit des déformations importantes. Les propriétés mesurées dépendent des lipides présents en majorité.

Notes et références[modifier | modifier le code]

  1. a, b et c Michel Lacombe, Abrégé d'anatomie et de physiologie humaines, De Boeck Education,‎ 2006, 6e éd., 229 p. (ISBN 2757300253, lire en ligne), p. 30-31
  • Gurtin, M.(2003). An Introduction to continuum mechanics. San Diego, États-Unis: Elsevier.
  • Totten, G., & Liang, H. (2004). Mechanical tribology. New York, États-Unis: Marcel Dekker.

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]

Mécanique du solide[modifier | modifier le code]

Mécanique des fluides[modifier | modifier le code]

  • Modélisation de la chimiohyperthermie intrapéritonéale : étude expérimentale de certains aspects thermiques, K. Szafnicki, M. Cournil, D O'Meara, J-N. Talabard, J. Porcheron, T. Schmitt, J.G Balique, Bull. Cancer no 85 (2), p. 160-166, 1998 : circulation d'eau chaude dans l'abdomen pour le traitement du cancer

Biomécanique des traumatismes crânio-cérébraux[modifier | modifier le code]