Génomique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

Sur les autres projets Wikimedia :

La génomique est une discipline de la biologie moderne. Elle étudie le fonctionnement d'un organisme, d'un organe, d'un cancer, etc. à l'échelle du génome, et non plus limitée à celle d'un seul gène.
La génomique se divise en deux branches :

  • La génomique structurale, qui se charge du séquençage du génome entier ;
  • La génomique fonctionnelle, qui vise à déterminer la fonction et l'expression des gènes séquencés en caractérisant le transcriptome et le protéome.

Histoire[modifier | modifier le code]

L'essor de cette discipline a été facilité par le développement des techniques de séquençage des génomes et la bio-informatique.

Utilité[modifier | modifier le code]

Connaitre la séquence nucléotidique permet une multitude d'études :

Génomique structurale[modifier | modifier le code]

Cette branche de la génomique regroupe toutes les analyses de la structure des génomes (Ici « structure » est entendu au sens « organisation des génomes ») ; Les méthodes concernées sont donc le séquençage des génomes, l'identification des gènes, des séquences régulatrices, des séquences répétées, etc.

Séquençage des génomes[modifier | modifier le code]

Article détaillé : séquençage des génomes.

Annotation des génomes[modifier | modifier le code]

L'annotation des génomes est une analyse informatique des séquences obtenues lors du séquençage permettant d'identifier les séquences informatives des génomes. Ces séquences sont principalement les gènes (on parle alors de prédiction de gènes). La plupart de ceux-ci sont identifiés soit par leur similitude avec des gènes déjà connus, soit par une prédictions en fonction de la séquence (présence d'une phase ouverte de lecture caractérisée par un codon d'initiation de la traduction, puis au moins 100 codons et enfin un codon stop. Mais il existe aussi des « gènes morcelés » (contenant des introns) ou codant des ARN fonctionnels, ceux-ci doivent être prédit par des algorithmes différents.

Les gènes ne sont pas les seules cibles de l'annotation des génomes, il existe de nombreux autres types de séquences importantes dans les génomes ; les séquences régulatrices, les éléments transposables, etc.

Génomique fonctionnelle[modifier | modifier le code]

Une fois les génomes annotés, l'étape suivante sera la recherche de la fonction des séquences informatives identifiés. La génomique fonctionnelle peut être considérée comme de la génétique à « haut débit ». Les techniques utilisés seront comparables mais généralement appliqués à un grand nombre de gènes en parallèles, cela peut par exemple être la création de mutants et l'analyse de leurs phénotypes pour toute une famille de gènes, ou l'analyse de l'expression tous les gènes d'un organisme entier.

Exemples de recherche en génomique en France[modifier | modifier le code]

  • Genoscope : Centre national de séquençage. Le Génoscope a mené la contribution française au projet international de séquençage du génome humain en séquençant le chromosome 14.
  • Marine Genomics Europe : Ce réseau européen a pour but le développement de la génomique marine, de favoriser les échanges entre chercheurs dans ce domaine, mais aussi de développer des actions de vulgarisation.
  • Genoscreen : biotech française spécialisée en génomique, Genoscreen mène des programmes de recherche et développement, en partenariat avec des équipes de recherche académique, dans des travaux intéressant la santé humaine par la recherche de déterminants génétiques de pathologies neurodégénératives, et le développement de méthodes et d'outils moléculaires de typage et de caractérisation de micro-organismes pathogènes responsables de maladies infectieuses.
  • Le projet Barcode of Life : Paul Hebert (Université de Guelph (Ontario) a proposé[2] de constituer une sorte de bibliothèque[3] des espèces en utilisant des codes-barres génétiques identifiant potentiellement chaque espèce vivante connue à partir d'un marqueur (chez l'animal, une région de 648 paires de bases dans un gène (CO1) de l'ADN mitochondrial). Fin 2007, 160 organisations, de 50 pays, s'étaient associées à ce projet, la base de donnée comprenant déjà plus de 318 000 séries décrivant près de 33 900 espèces. Cette approche a des limites (confusions en cas d'hybridation ou si une espèce a divergé récemment, informations sur l'espèce, mais non sur sa position dans l'arborescence phylogénétique) mais présente un intérêt pour les besoins de traçabilité (aliments, dont par exemple les poissons souvent vendus sous des noms différents pour une même espèce), pour de nombreuses études en écologie, pour les industries biotechnologiques. Ce travail permet aussi de corriger des erreurs en taxinomie. Par exemple, un seul nom désignait en fait 3 espèces différentes de sangsues médicinales européennes (dont Hirudo medicinalis, Hirudo verbana)[4] susceptibles d'être commercialisées, alors qu'une seule a été bien étudiée pour ses propriétés.

Notes et références[modifier | modifier le code]

  1. Nucleotide Sequence of the Gene Coding for the Bacteriophage MS2 Coat Protein
  2. projet BOLD ( « Code Bar Of Life » )
  3. Hebert P et al. (2003) Proc Roy Soc Lond Ser B 270, 313-21
  4. Source : Biofutur, déc 2007, n° 283, page 6

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]