Hypothèse nulle

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche

En statistiques et en économétrie, l'hypothèse nulle est une hypothèse postulant l'égalité entre des paramètres statistiques (généralement, la moyenne ou la variance) de deux échantillons dont elle fait l’hypothèse qu'ils sont pris sur des populations équivalentes. Elle est toujours testée contre une hypothèse alternative qui postule soit la différence des données (test bilatéral dans ce cas), soit une inégalité (plus petit que ou plus grand que) entre les données (test unilatéral).

Origine du concept[modifier | modifier le code]

Le besoin de la notion d'hypothèse nulle est une conséquence de la nature intrinsèque du calcul statistique, dans lequel la probabilité pour un tirage aléatoire simple de se trouver à l'intérieur d'un intervalle donné est d'autant plus faible que cet intervalle est petit. Tant qu'on veut démontrer que deux nombres sont différents, il suffit qu'ils soient suffisamment éloignés l'un de l'autre pour avoir une probabilité suffisamment petite pour que cet écart soit une conséquence du hasard. On calcule en fonction d'un modèle statistique approprié une p-valeur qui correspond à la probabilité d'obtenir avec ce modèle une différence au moins égale à celle observée. Si cette p-valeur est inférieure à une limite de référence, choisie dans le respect de certaines conventions arbitraires, on considère que la différence observée est significative.

Prouver l'égalité stricte par cette méthode est par contre impossible parce que la probabilité associée à un intervalle de largeur nulle serait de 0. C'est la raison pour laquelle l'hypothèse qui n’est pas démontrable de façon exacte est l'hypothèse par défaut. Cela n'implique nullement l'idée que l'hypothèse nulle serait épistémologiquement vraie par défaut. On procède de cette façon pour la seule raison qu'il n'est pas possible de procéder autrement.

Terminologies alternatives[modifier | modifier le code]

Certains auteurs, comme le mathématicien américain Jordan Ellenberg (qui aborde cette question dans son livre L'art de ne pas dire n'importe quoi [1]), ont proposé de rebaptiser l'hypothèse nulle pour rendre la notion plus accessibles aux néophytes. Le vulgarisateur scientifique français Florian Gouthière propose ainsi d'employer l'expression "hypothèse économe" :

Ce que nous avons appelé « situation de référence », les chercheurs scientifiques l’appellent couramment «hypothèse nulle» (null hypothesis). S’il est bon de la connaître, cette expression nourrit souvent une certaine incompréhension de la part des non-initiés. Hypothèse « sage », « conservatrice », « banale », « économe » même, si vous voulez [...] « Timorée » à la limite… [...] En cohérence avec le principe du « rasoir d’Occam » [...] nous serions plutôt tentés de parler d’hypothèse économe[2].

Usage[modifier | modifier le code]

L'hypothèse nulle permet de réaliser tous les tests statistiques et économétriques ; en supposant celle-ci vraie, on teste une valeur contre la valeur critique (donnée par la loi et la table de cette loi statistique). Elle peut être rejetée ou non avec un risque α (risque de première espèce). Le non rejet de l'hypothèse nulle n'implique pas l'égalité mais entraîne une discussion autour de la puissance du test, qui implique de prendre en compte une marge arbitraire dans laquelle on considérera qu'il y a à peu près égalité.

Exemple[modifier | modifier le code]

Si l'on veut tester l'égalité des tailles moyennes chez les hommes (groupe 1) et les femmes (groupe 2) :

où :

= hypothèse nulle
= moyenne population 1
= moyenne population 2

Article connexe[modifier | modifier le code]

Notes et références[modifier | modifier le code]

  1. Ellenberg, Jordan, (1971), L'art de ne pas dire n'importe quoi : ce que le bon sens doit aux mathématiques (ISBN 978-2-84225-223-6 et 2-84225-223-3, OCLC 1008966021, lire en ligne)
  2. Gouthière, Florian., Santé, science, doit-on tout gober?, Belin, (ISBN 978-2-410-00930-9 et 2-410-00930-1, OCLC 1019716097, lire en ligne), p. 154