Aller au contenu

Théorème de Borel-Cantelli

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 8 février 2022 à 14:22 et modifiée en dernier par 195.83.11.69 (discuter). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

Le théorème de Borel-Cantelli ou lemme de Borel-Cantelli, nommé d'après les mathématiciens Émile Borel et Francesco Paolo Cantelli, est un résultat de théorie de la mesure très utilisé en théorie des probabilités.

Introduction

En théorie des probabilités, ce théorème concerne une suite d'événements et énonce que :

Lemme de Borel-Cantelli — Si la somme des probabilités d'une suite d'événements d'un espace probabilisé est finie, alors la probabilité qu'une infinité d'entre eux se réalisent simultanément est nulle.

L'indépendance des événements n'est pas nécessaire. Par exemple, considérons une suite de variables aléatoires, telle que, pour tout

La somme des est finie[1], donc d'après le lemme de Borel-Cantelli la probabilité que se produise pour une infinité d'indices est 0. En d'autres termes, avec une probabilité de 1, est non nul à partir d'un certain rang (aléatoire) On a donc appliqué le lemme de Borel-Cantelli à la suite d'événements définie par

.

Limite supérieure d'ensembles

Définition — La limite supérieure d'une suite (An)n≥0 de parties d'un ensemble est l'ensemble des éléments de tels que l'assertion soit vérifiée pour une infinité d'indices .

En d'autres termes, on peut dire que si et seulement si l'ensemble est infini, ou bien non borné. Une formulation équivalente est la suivante : pour tout , on peut trouver tel que . Cette dernière formulation fournit une écriture commode de la limite supérieure d'ensembles à l'aide d'opérations élémentaires sur les ensembles :

Sous l'influence de la terminologie anglo-saxonne, on dira aussi parfois que si et seulement si « infiniment souvent » ou bien « infinitely often », d'où la notation rencontrée dans certains ouvrages :

Finalement, remarquons que la définition «  si et seulement si appartient à une infinité de  » peut induire en erreur : si par exemple toutes les parties sont égales, il se peut que appartienne à pour une infinité d'indices , et il se peut donc que appartienne à sans pour autant qu' appartienne à une infinité de (puisqu'il n'existe, au fond, qu'un seul ).

Théorème de Borel-Cantelli (théorie de la mesure)

Pour un espace mesuré général , le lemme de Borel-Cantelli prend la forme suivante :

Théorème de Borel-Cantelli — Soit une suite dans . Si

alors

Lemme de Borel-Cantelli (probabilités)

Un espace probabilisé est un cas particulier d'espace mesuré, en ce qu'on suppose, de plus, que , alors que dans le théorème général, la mesure (positive) μ n'est pas supposée finie a priori. En particulier, le lemme de Borel-Cantelli donné en introduction est une forme affaiblie du théorème de Borel-Cantelli donné à la section précédente. Peut-être le lemme de Borel-Cantelli est-il plus populaire en probabilités, où il est crucial dans la démonstration, par Kolmogorov, de la loi forte des grands nombres (s'il ne faut donner qu'un seul exemple). Dans le cadre probabiliste, une formulation plus formelle du lemme donné en langage intuitif dans l'introduction pourrait donc s'écrire :

Lemme de Borel-Cantelli — Dans un espace probabilisé considérons une suite d'éléments de . Si

alors

Loi du zéro-un de Borel

Le lemme de Borel-Cantelli ne doit pas être confondu avec la loi du zéro-un de Borel, parfois appelée second lemme de Borel-Cantelli :

Loi du zéro-un de Borel — Si les événements sont indépendants, alors vaut 0 ou 1 suivant que la série de terme général est convergente ou divergente.

La loi du zéro-un de Borel[2] montre en particulier que l'hypothèse du lemme de Borel-Cantelli ne peut en aucun cas être affaiblie en . En effet, on peut avoir simultanément d'une part et d'autre part (indépendance des et ), donc on peut avoir simultanément :

Notes et références

  1. En fait elle vaut voir l'article Fonction zêta de Riemann, par exemple la section Valeurs de la fonction zêta pour s entier supérieur à 1.
  2. Émile Borel, « Les probabilités dénombrables et leurs applications arithmétiques », Rendiconti del Circolo Matematico di Palermo, vol. 27, no 1,‎ , p. 247-271 (ISSN 0009-725X et 1973-4409, DOI 10.1007/BF03019651). La loi du zéro-un de Borel a été publiée en vue, semble-t-il, d'applications aux propriétés des fractions continues. Un peu plus tard, Cantelli aurait remarqué et utilisé le fait que, pour l'un des deux sens, l'hypothèse d'indépendance est superflue, ce qui a conduit au lemme de Borel-Cantelli (à vérifier).

Voir aussi