Équation aux dérivées partielles

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (EDP) est une équation dont les solutions sont les fonctions inconnues vérifiant certaines conditions concernant leurs dérivées partielles.

Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire (à une seule variable) ; les problèmes incluent souvent des conditions aux limites qui restreignent l'ensemble des solutions. Alors que les ensembles de solutions d'une équation différentielle ordinaire sont paramétrées par un ou plusieurs paramètres correspondant aux conditions supplémentaires, dans le cas des EDP les conditions aux limites se présentent plutôt sous la forme de fonction ; intuitivement cela signifie que l'ensemble des solutions est beaucoup plus grand, ce qui est vrai dans la quasi-totalité des problèmes.

Les EDP sont omniprésentes dans les sciences, puisqu'elles apparaissent aussi bien en dynamique des structures, mécanique des fluides que dans les théories de la gravitation de l'électromagnétisme (équations de Maxwell) ou des mathématiques financières (équation de Black-Scholes). Elles sont primordiales dans des domaines tels que la simulation aéronautique, la synthèse d'images, ou la prévision météorologique. Enfin, les équations les plus importantes de la relativité générale et de la mécanique quantique sont également des EDP.

L'un des sept problèmes du prix du millénaire consiste à montrer l'existence et la continuité par rapport aux données initiales d'un système d'EDP appelé équations de Navier-Stokes. Ces équations servent énormément en mécanique des fluides.

Introduction[modifier | modifier le code]

Une équation différentielle très simple est :

 \frac{\partial u}{\partial x}=0\,

u est une fonction inconnue de x et y. Cette relation implique que les valeurs u(x,y) sont indépendantes de x. Les solutions de cette équation sont :

u(x,y) = f(y),\,

f est une fonction de y.

L'équation ordinaire :

 \frac{du}{dx}=0\,

a pour solution :

u(x) = c,\,

avec c une valeur constante (indépendante de x). Ces deux exemples illustrent qu'en général, la solution d'une équation différentielle ordinaire met en jeu une constante arbitraire, tandis que les équations aux dérivées partielles mettent en jeu des fonctions arbitraires. Une solution des équations aux dérivées partielles n'est généralement pas unique.

Trois catégories importantes d'EDP sont les équations aux dérivées partielles linéaires et homogènes du second-ordre dites elliptiques (en), hyperboliques (en) et paraboliques (en).

Notations[modifier | modifier le code]

En mathématiques[modifier | modifier le code]

Pour les EDP, par souci de simplification, il est d'usage d'écrire u la fonction inconnue et Dxu (notation française) ou ux (notation anglo-saxonne, plus répandue) sa dérivée partielle par rapport à x, soit avec les notations habituelles du calcul différentiel :

u_x = {\part u \over \part x}

et pour les dérivées partielles secondes :

u_{xy} = {\part^2 u \over \part y\, \part x} = {\part \over \part y } \left({\part u \over \part x}\right)

En physique[modifier | modifier le code]

Les opérateurs de l'analyse vectorielle sont utilisés.

Exemples d'EDP[modifier | modifier le code]

Équation de Laplace[modifier | modifier le code]

L'équation de Laplace est une EDP de base très importante :

{\part^2 u \over \part x^2} + {\part^2 u \over \part y^2} + {\part^2 u \over \part z^2} = 0

où u(x,y,z) désigne la fonction inconnue.

En notation d'analyse vectorielle, en utilisant l'opérateur laplacien  \Delta

Soit  \psi \equiv u\left(x,y,z,t\right) \ , fonction d'onde.
 \Delta \psi \ = \ 0

Équation de propagation (ou équation des cordes vibrantes)[modifier | modifier le code]

Cette EDP, appelée équation de propagation des ondes, décrit les phénomènes de propagation des ondes sonores et des ondes électromagnétiques (dont la lumière). La fonction d'onde inconnue est notée u(x,y,z,t), t représentant le temps :

{\part^2 u \over \part x^2} + {\part^2 u \over \part y^2} + {\part^2 u \over \part z^2} = {1 \over c^2} {\part^2 u \over \part t^2}

Le nombre c représente la célérité ou vitesse de propagation de l'onde u.

En notation d'analyse vectorielle, en utilisant l'opérateur laplacien  \Delta  :

Soit  \psi \equiv u\left(x,y,z,t\right) \ , fonction d'onde.
 \Delta \psi \ = \ {1 \over c^2} {\part^2 \psi \over \part t^2}
Équation d'onde, forme générale
Onde  ~\psi Partie longitudinale Partie transversale Propagation Dissipation
 ~\Delta \psi  \ =  \overrightarrow{\textrm{grad}}\left[\textrm{div} \ \psi \right]  \ -  \overrightarrow{\textrm{rot}}\left[\overrightarrow{\textrm{rot}} \ \psi\right]  \ =  { 1 \over c^2} {\part^2 \psi \over \part t^2}  \ +  {1 \over \alpha} {\part \psi \over \part t}

Voir aussi onde sismique, onde mécanique, Son, Onde sur une corde vibrante, Onde stationnaire dans un tuyau, Equations de Maxwell

Équation de Fourier[modifier | modifier le code]

{\part^2 u \over \part x^2} + {\part^2 u \over \part y^2} + {\part^2 u \over \part z^2} = {1 \over \alpha}{\part u \over \part t}

Cette EDP est également appelée équation de la chaleur. La fonction u représente la température. La dérivée d'ordre 1 par rapport au temps traduit l'irréversibilité du phénomène. Le nombre \alpha est appelé diffusivité thermique du milieu.

En notation d'analyse vectorielle, en utilisant l'opérateur laplacien  \Delta  :

Soit  \psi \equiv u \left(x,y,z\right) \ , fonction d'onde de température.
 \Delta \psi \ = \ {1 \over \alpha } {\part \psi \over \part t}

Équation de Poisson[modifier | modifier le code]

En utilisant l'opérateur laplacien  \Delta  :

Soient  \psi\left(x,y,z\right) \ , fonction d'onde et  \rho\left(x,y,z,t\right) densité de charge.
 \Delta \psi \ = - 4\pi\rho

Équation d'onde de Langmuir[modifier | modifier le code]

Soient  \psi\left(x,y,z,t\right) \ , fonction d'onde et  \rho\left(x,y,z,t\right) densité de charge.
 \Delta \psi \ = {1 \over c^2 }. { \part^2 \psi \over \part t^2} - { \rho \over \epsilon }

Cette équation décrit des ondes électriques longitudinales en propagation dans un plasma.

Équation de Stokes[modifier | modifier le code]

L'équation de Stokes, qui décrit l'écoulement d'un fluide newtonien incompressible en régime permanent et à faible nombre de Reynolds, s'écrit :

\eta \Delta \vec{v} = \overrightarrow{\mathrm{grad}}\,p - \rho \vec{f},

Équation de Schrödinger[modifier | modifier le code]

Article détaillé : Équation de Schrödinger.
i\hbar {\part \psi \over \part t} \ = \left[ - \frac{\hbar^2}{2m}\Delta + V\right] \psi

Équation de Klein-Gordon[modifier | modifier le code]

Article détaillé : Équation de Klein-Gordon.

Soit  \psi\left(x,y,z,t\right), fonction d'onde.

-\hbar^2 {\part^2 \psi \over \part t^2} \ = - \hbar^2 c^2 \Delta \psi + m^2c^4 \psi

Méthodes de résolution numérique[modifier | modifier le code]

Les méthodes numériques les plus couramment utilisées pour la résolution des équations aux dérivées partielles sont :

Articles connexes[modifier | modifier le code]

Bibliographie[modifier | modifier le code]

  • Lars Hörmander ; The analysis of linear partial differential operators, Springer-Verlag (1983 à 1985). Traité de référence en quatre volumes, par le récipiendaire de la médaille Fields 1962. Le volume I est sous-titré : Distribution theory and Fourier analysis, et le volume II : Differential operators with constant coefficients. Les volumes III et IV sont consacrés à la théorie moderne via les opérateurs pseudo-différentiels.
  • Lars Hörmander ; Linear Partial Differential Operators, Springer-Verlag (1963). Le livre qui contient les travaux pour lesquels l'auteur a obtenu la médaille Fields en 1962.
  • Yu.V. Egorov & M.A. Shubin ; Foundations of the Classical Theory of Partial Differential Equations, Springer-Verlag (2ème édition - 1998), ISBN 3-540-63825-3. Premier volume d'une série qui en comporte neuf, écrits pour l' Encylopaedia of Mathematical Sciences. Les volumes suivants sont consacrés à la théorie moderne via les opérateurs pseudo-différentiels.
  • Michael E. Taylor ; Partial Differential Equations - Basic Theory, Series: Texts in Applied Mathematics, Vol. 23, Springer-Verlag (2ème édition - 1999), ISBN 0-387-94654-3. Premier volume d'une série qui en comporte trois. Les volumes suivants sont consacrés à la théorie moderne via les opérateurs pseudo-différentiels.
  • Vladimir I. Arnold ; Lectures on partial differential equations, Springer-Verlag (2004), ISBN 3-540-40448-1.