Fluide (matière)

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Fluide.

Un fluide est un milieu matériel parfaitement déformable. On regroupe sous cette appellation les gaz qui sont l'exemple des fluides compressibles, et les liquides, qui sont des fluides peu compressibles. Dans certaines conditions (températures et/ou pressions), le milieu n'est ni liquide, ni gazeux, il reste fluide (voir Diagramme de phase d'un corps pur).

Les particules constitutives d'un fluide ne sont pas liées par des liaisons covalentes (c'est-à-dire de liaison chimique). Dans un gaz, les interactions entre particules sont négligeables, sauf lorsqu'elles se rencontrent (chocs). Dans un liquide, les molécules sont tellement proches qu'il est difficile de comprimer le fluide. Elles interagissent cette fois fortement par l'intermédiaire de forces de van der Waals, des interactions dipôlaires (les particules se comportant comme des dipôles électrostatiques). Ce type d'interaction explique les propriétés physiques et chimiques des liquides.

Comportement rhéologique[modifier | modifier le code]

Le comportement rhéologique d'un fluide traduit la réponse mécanique de celui-ci, c'est-à-dire la relation entre les déformations du fluide et les contraintes appliquées. De manière générale, elle s'exprime par une équation constitutive reliant le tenseur des contraintes et le tenseur des taux de déformation. Il existe une grande variété de comportements rhéologiques, depuis une simple relation linéaire entre contraintes et taux de déformation, jusqu'à des comportements complexes, pouvant dépendre des vitesses de déformation, de l'histoire du fluide ou des conditions d'écoulement.

La loi d'Ostwald–de Waele permet, par exemple, de modéliser de manière simplifiée et dans certaines limites, le comportement des fluides newtoniens, rhéofluidifiants et rhéoépaississants.

Fluide newtonien[modifier | modifier le code]

Article détaillé : Fluide newtonien.

Un fluide est dit newtonien lorsque le tenseur des contraintes visqueuses est une fonction linéaire du tenseur des taux de déformation. Le facteur de proportionnalité se nomme viscosité, il est constant et indépendant du taux de cisaillement  \dot \gamma . Pour la plupart des fluides usuels [eau, lait, jus de fruits naturels (non concentrés), la plupart des miels, huiles minérales, solvants organiques, etc.] dans des conditions standards, ce modèle est très satisfaisant.

Pour ce type de fluide, l'équation d'évolution est une équation de Navier-Stokes. Pour donner un exemple, dans le cas d'un fluide incompressible et homogène (à masse volumique constante), cette équation s'écrit, dans sa version massique

\frac{\partial \vec{v}}{\partial t} + \left( \vec{v}\cdot \vec{\operatorname{grad}} \right) \vec{v} = - \frac{\vec{\operatorname{grad}}\,P}{\rho} + \vec{f_m} + \nu \Delta \vec{v}

où :

  • \vec{v} est le vecteur vitesse ;
  • \rho est la masse volumique ;
  • P est la pression ;
  • \vec{f_m} sont des forces par unité de masse (par exemple, l'action de la pesanteur : \vec{g}) ;
  • \nu est la viscosité cinématique.

Fluide non newtonien au comportement indépendant du temps[modifier | modifier le code]

Un fluide est dit non newtonien lorsque le tenseur des contraintes visqueuses n'est pas une fonction linéaire du tenseur des taux de déformation. Autrement dit, lorsque sa vitesse de déformation (par exemple le taux de cisaillement) n'est pas directement proportionnelle à la force qu'on lui applique. Le meilleur exemple est celui du sable mouillé en bord de mer : quand on frappe le sable, il a la viscosité élevée d'un solide, alors que lorsqu'on appuie doucement dessus, il se comporte comme une pâte. Un autre exemple typique est un mélange épais d'eau et de Maïzena (fécule de maïs), dans lequel une main entre aisément à faible vitesse, mais ne peut rentrer à grande vitesse.

En rhéologie et de manière simple, un fluide non newtonien correspond à un fluide dont la viscosité  \eta dépend du taux de cisaillement. Concrètement lorsqu'on soumet un tel matériau à une contrainte de cisaillement  \sigma , la réponse de ce fluide n'est pas proportionnelle, ce qui serait le cas pour un fluide newtonien. Il existe plusieurs types classiques de fluide non newtonien. Ils ne sont d'ailleurs pas exclusifs l'un de l'autre, un fluide peut présenter plusieurs des propriétés présentes ci-dessous.

Fluide rhéofluidifiant ou pseudoplastique[modifier | modifier le code]

Rhéofluidification d’un fondu : courbe de viscosité \mu* en cisaillement et oscillation = f (\dot \gamma).

Pour des fluides tels les polymères en solution ou à l'état fondu, émulsions peu chargées, suspensions, dispersions (ex. : purée de fruits, moutarde), la viscosité diminue lorsque le gradient de vitesse augmente. Cela donne un système de plus en plus fluide, ce qui justifie le nom de « rhéofluidifiant ». La courbe d'écoulement (représentation graphique de \sigma=f(\dot \gamma)) d'un corps pseudoplastique s'incurve vers le bas. Pour de très faibles et très élevées valeurs de  \dot \gamma , le liquide est newtonien (ce qui est quasi universel), cela correspond aux 1er et second domaines newtoniens, respectivement. À chacun de ces domaines est associée une viscosité constante appelée viscosité à cisaillement nul ou viscosité en écoulement continu (\eta_0), et viscosité infinie (\eta_\infty), respectivement.

Fluide rhéoépaississant ou dilatant[modifier | modifier le code]

Le comportement rhéoépaississant, inverse à la rhéofluidification, est assez rare. La viscosité augmente lorsque le taux de cisaillement augmente. Ce phénomène est nommé (en) dilatant ou shear thickening, (de) dilatanz. La courbe d'écoulement correspondante s'incurve vers le haut. On retrouve ce comportement pour des suspensions très concentrées ou certains polymères associatifs (ex. : empois, certains miels et certaines formulations de plastisols, suspensions concentrées de fécule de maïs, D3o ).

Fluide à seuil ou viscoplastique[modifier | modifier le code]

Dans le cas du comportement (visco)plastique, l'écoulement n'a lieu qu'au-delà d'une certaine valeur de contrainte à appliquer sur le fluide, dite point de fluage, seuil d'écoulement, seuil de plasticité, contrainte critique ou contrainte seuil ((en) yield stress). Au-delà, on retrouve en général un comportement de type rhéofluidifiant.

Quelques matériaux, tels la mayonnaise ou les boues de forage, ont cependant un comportement linéaire de type newtonien après leur seuil d'écoulement. On parle alors de fluide de Bingham. Le modèle de Bingham est[1] \sigma = \sigma_y + k \dot \gamma^n .

Certaines peintures et graisses sont des fluides à seuil.

Fluide non newtonien au comportement dépendant du temps[modifier | modifier le code]

Fluide thixotrope[modifier | modifier le code]

Article détaillé : Thixotropie.

La thixotropie étant un comportement dépendant du taux de cisaillement \dot \gamma (ou de la contrainte \sigma) et du temps, on maintient l'un des facteurs constant (\sigma ou \dot \gamma). Après une longue période de repos, \sigma ou \dot \gamma étant brusquement appliqué puis maintenu constant, on observe une diminution de la viscosité apparente avec le temps. La structure est désorganisée par cisaillement. Le produit retrouve intégralement son état initial après un repos assez long (dans le cas contraire, il s'agit de thixotropie partielle). La thixotropie est souvent associée à un comportement rhéofluidifiant. On peut également avoir une contrainte seuil pour ces fluides. On observe ainsi des phénomènes d'hystérésis.

Fluide antithixotrope[modifier | modifier le code]

Article connexe : Antithixotropie.

Inversement, on trouve également les fluides antithixotropes (très rares), c'est-à-dire dont la viscosité apparente augmente avec le temps, dans les mêmes conditions que pour une expérience de thixotropie. La structure est organisée par cisaillement. L'antithixotropie est souvent associée à un comportement rhéoépaississant.

Il ne faut pas confondre l'antithixotropie et la rhéopexie ((en) rheopecty ou rheopexy) : ce dernier terme désigne la solidification d'un système thixotrope sous l'effet d'un mouvement doux et régulier[2].

Fluide incompressible[modifier | modifier le code]

Un fluide est dit incompressible lorsque sa masse volumique \rho reste constante dans un écoulement. Dans ce cas, l'équation de continuité

\frac{\partial \rho}{\partial t} + div(\rho \overrightarrow{v}) = 0

se réduit à  div( \overrightarrow{v}) = 0.

Références[modifier | modifier le code]

  1. (en) Bořek Patzák, Bingham Fluid , 24 août 2009
  2. J. Bouton (Rhéo), G. Couarraze (Université Paris-Sud) et J.-L. Grossiord (Université Paris-Sud), Rhéologie et rhéométrie - Caractérisation de la viscosité, de la plasticité et de l’élasticité des liquides et des produits pâteux - Lois de comportement, fascicule, 50 p.éd. société Rhéo, Champlan.

Articles connexes[modifier | modifier le code]

Sur les autres projets Wikimedia :