Liaison chimique

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
Page d'aide sur l'homonymie Pour les articles homonymes, voir Liaison.

On appelle liaison chimique toute interaction attractive qui maintient des atomes à courte distance. Cette interaction peut être directionnelle comme la liaison entre deux atomes au sein d'une molécule, ou non-directionnelle comme l'interaction électrostatique qui maintient les ions d'un cristal ionique au contact. Elle peut être forte comme les deux précédents exemples, ou faible comme les interactions de van der Waals qui sont de nature dipolaire.

De nombreux modèles existent pour décrire ces interactions. Par exemple la liaison chimique entre deux atomes au sein d'une molécule peut être décrite avec le modèle de Lewis ou avec un modèle quantique, comme la théorie des orbitales moléculaires. Dans les deux cas, l'origine de l'interaction est un partage d'électrons entre les deux atomes partenaires de la liaison chimique.

Les liaisons plus faibles sont expliquées, en général, par des polarités entre des molécules. C'est le cas des interactions très faibles comme les forces de London qui font partie des forces de van der Waals. De telles forces interprètent le maintien dans un état condensé solide ou liquide de composés moléculaires comme le diiode ou les hydrocarbures.

La description d'une liaison chimique doit préciser le modèle utilisé et l'énergie de la liaison.

Survol[modifier | modifier le code]

Décrire pourquoi les atomes des molécules ou des cristaux demeurent au contact est l'objet de l'étude de la liaison chimique. Si les liaisons chimiques n'existaient pas (ou quand elles ne sont pas assez solides par rapport à l'énergie de température), les atomes ne restent pas au contact. C'est l'état liquide, voire gazeux. Comprendre ce qu'est une liaison chimique permet d'interpréter la réaction chimique. En effet, une réaction chimique n'est autre que la transformation des liaisons chimiques.

Il existe un grand nombre de façons de décrire les liaisons chimiques. D'une part, chaque type de liaison fait appel à un modèle différent :

etc.

D'autre part, pour un type de liaison donnée, il existe plusieurs modèles :

etc.

L'intérêt d'avoir plusieurs modèles pour un même type de liaison relève souvent de l'histoire des sciences. Par exemple, le modèle de Lewis est venu très tôt (1916) alors que le modèle des orbitales moléculaires (par exemple LCAO-MO, ce qui signifie Linear Combinaison of Atomic Orbitale [pour faire des] Molecular Orbitals) a été introduit plus récemment. Il est bien plus complexe à utiliser mais il fournit de nombreuses informations sur la liaison covalente que ne fournit pas le modèle de Lewis, par exemple il permet de prévoir, par le calcul, l'énergie de la liaison ou la prévision du spectre électronique. Quand de telles informations ne sont pas utiles, le modèle de Lewis suffit et est utilisé bien que moins performant et plus ancien.

Le développement théorique le plus abouti, utilisé pour décrire une liaison chimique, est la théorie des orbitales moléculaires. Celle-ci décrit les atomes par des fonctions appelées orbitales atomiques. Des combinaisons linéaires de ces fonctions constituent les orbitales moléculaires qui décrivent les molécules. Ces orbitales moléculaires peuvent être :

  • liantes ; dans ce cas, les électrons de liaison ont la plus grande probabilité de se trouver entre les noyaux qu'ailleurs ; l'orbitale tend alors à maintenir les noyaux ensemble ; ces orbitales sont l'équivalent des liaisons covalentes de la théorie de Lewis ;
  • non-liantes : dans ce cas, les électrons ont plus de probabilité de se trouver plus près d'un des noyaux ; ces orbitales sont l'équivalent des doublets non liants de la théorie de Lewis.
  • antiliantes : dans ce cas les électrons ont plus de probabilité de ne pas se trouver entre deux atomes liés ; ces orbitales n'ont pas d'équivalent dans la théorie de Lewis.

La liaison ionique s'interprète différemment. Elle se rencontre dans un cristal et maintient les anions (négatifs) et les cations (positifs) au contact. Des forces électrostatiques maintiennent les ions de signes opposés aux contact alors que des forces de même nature entre les ions de même signes tendent à faire "éclater" le cristal. Il se trouve que la somme des forces attractives est plus grande que la somme des forces répulsives ; le cristal peut ainsi exister.

Pour les modèles qui donnent accès à l'énergie des atomes et des molécules, les liaisons se forment (et donc les édifices qu'elles constituent existent) si l'énergie de l'édifice (molécule, cristal) est inférieure à l'énergie des atomes ou des ions pris séparément. Ainsi, l'énergie de la molécule H2 est inférieure à l'énergie de deux atomes H. La molécule H2 existe donc. En revanche, l'énergie de la molécule He2 est supérieure à l'énergie de deux atomes d'hélium pris séparément. Ceci explique que la molécule He2 n'existe pas.

Histoire[modifier | modifier le code]

Expliquer comment les atomes sont unis est aussi ancien que la notion d'atome elle-même. Les philosophes et les alchimistes ont évoqué la notion d'atomes crochus (pour qu'ils s'accrochent entre eux), au même titre que l'acidité était expliquée par des atomes piquants et l’alcalinité par la présence d'atomes râpeux [1].

D'autres interprétations de la liaison chimique, dès le début du XIIe siècle, supposaient que certains types d'espèces chimiques étaient liés par certains types d'affinité chimique. Quelques siècles plus tard, le physicien anglais Isaac Newton posait la question des forces qui assemblent les atomes dans la célèbre "question 31" de son traité Opticks. Ainsi écrit-il : "Les particules s'attirent les unes les autres par des forces qui, à leur proximité sont fortes et permettent les opérations chimiques".

Antoine Lavoisier, Claude Louis Berthollet et surtout Pierre-Simon de Laplace ont précisé la notion d'affinité chimique en la basant sur l'existence de forces de même nature que les forces de gravitation[1] (ce en quoi ils avaient tort). Ce sont les découvertes sur l'électricité et les premières électrolyses de Humphry Davy qui permirent d'orienter la réflexion vers des interactions de nature électrique (et non gravitationnelle). Pour Davy, l'affinité entre atomes résultait de charges électriques opposées, ce que généralisa Jöns Jacob Berzelius en 1812. Il fallut attendre plus d'un siècle pour que cette piste se concrétise, mais pas dans la direction envisagée par ses auteurs. En effet, leur théorie ne pouvait expliquer la liaison entre deux atomes identiques comme dans H2, Cl2, O2 etc [2]. Ainsi en vint-on à distinguer des composés polaires comme NaCl et des composés non polaires comme CH4, avec toutes sortes de composés intermédiaires mal définis, par exemple HCl.

Au milieu du XIXe siècle, Edward Frankland, F.A. Kekule, A.S. Couper, A.M. Boutlerov et Hermann Kolbe, construisant la théorie des radicaux, développèrent la théorie des valences, appelée au départ "pouvoir de combiner" dans laquelle les composés étaient liés grâce à l'attraction de pôles positif et négatif.

En 1916, le chimiste Gilbert Lewis développa l'idée de la liaison par mise en commun d'électrons. Cette paire d'électrons constitue un lien chimique représenté par un trait.

Walter Heitler et Fritz London sont les auteurs de la première explication par la mécanique quantique de la liaison chimique, spécialement celle de l'hydrogène moléculaire, en 1927, utilisant la théorie de liaisons de valence. En 1930, la première description quantique de la liaison chimique simple fut développée dans la thèse de doctorat de Edward Teller.

En 1931, le chimiste Linus Pauling publia ce qui est parfois considéré comme le texte le plus important de l'histoire de la chimie : “On the Nature of the Chemical Bond”. Dans cet article basé sur les travaux de Lewis, Heitler et London, et sur son propre travail, il présente six règles pour la liaison avec électrons partagés ; les trois premières étaient généralement connues :

  1. la liaison par partage d'électrons se forme par l'interaction d'un électron célibataire de chacun des deux atomes
  2. les spins des deux électrons doivent être opposés
  3. une fois accouplés, les deux électrons ne peuvent pas entrer dans une autre liaison

Ses trois autres règles étaient nouvelles :

  1. l'échange d'électrons pour la liaison comprend une seule fonction d'onde pour chaque électron,
  2. les électrons disponibles dans le niveau d'énergie inférieur forment les liaisons les plus fortes,
  3. de deux orbitales d'un atome, c'est celle qui peut se superposer le plus à l'orbitale d'un autre atome qui formera la liaison la plus forte.

Calcul de l'énergie de la liaison de la molécule de dihydrogène[modifier | modifier le code]

Le premier calcul de l'énergie d'une liaison chimique, fondateur de la Chimie quantique est celui de la molécule la plus simple, celle de l'hydrogène par Bohr en 1913[3]. C'est sans doute le seul calcul de liaison chimique accessible à un non-spécialiste.

Hydrogène.jpg

Il consiste à appliquer le modèle de Bohr de l'atome à une molécule. On fait l'hypothèse que les électrons ont un mouvement circulaire de rayon r_0 autour de l'axe des protons p+p+, supposés immobiles et distants de R. La distance électron-proton e-p+ est r_1. En utilisant la formule du modèle de Bohr de l'atome pour l’état fondamental :

pr_0 = \hbar

où p=mv est la quantité de mouvement et \hbar=\frac{h}{2\pi} la constante de Planck réduite, l'énergie cinétique des électrons s'écrit :

E_C=2\frac{p^2}{2m_e}=\frac{1}{m_e}\left(\frac{h}{2\pi r_0}\right)^2=\frac{h^2}{4\pi^2m_e\left(r_1^2-\frac{R^2}{4}\right)}

Le potentiel V est attractif entre électrons et protons et se compose des quatre liaisons électron-proton. Il y a répulsion entre les électrons distants de 2r_0 et les protons distants de R. L'énergie potentielle s'écrit:

E_P=\frac{e^2}{4\pi\epsilon_0}\left(-\frac{4}{r_1}+\frac{1}{2r_0}+\frac{1}{R}\right)=\frac{e^2}{4\pi\epsilon_0}\left(-\frac{4}{r_1}+\frac{1}{2\sqrt{r_1^2-R^2}}+\frac{1}{R}\right)

L'énergie totale est:

E_T=E_C+E_P=\frac{h^2}{4\pi^2m_e\left(r_1^2-\frac{R^2}{4}\right)}+\frac{e^2}{4\pi\epsilon_0}\left(-\frac{4}{r_1}+\frac{1}{2\sqrt{r_1^2-R^2}}+\frac{1}{R}\right)

Dans un atome d’hydrogène, l’égalité entre la force électrostatique et la force centrifuge peut s’écrire :

\frac{h^2}{4\pi^2m_ea^2_0}=\frac{e^2}{4\pi\epsilon_0a_0}=2R_H

R_H=13,6\ eV est la constante de Rydberg, a_0=0,53\ Å le rayon de Bohr de l'atome d'hydrogène et \epsilon_0 la constante diélectrique.

En y retranchant l’énergie de liaison -2R_H de deux atomes d’hydrogène isolés, l’énergie totale de la molécule devient :

E_T=2R_H\left(\frac{1}{x^2-\frac{y^2}{4}}-\frac{4}{x}+\frac{1}{2\sqrt{x^2-\frac{y^2}{4}}}+\frac{1}{y} +1\right)

x=r_1/a_0 et y=R/a_0.

Cette équation se résout graphiquement en faisant varier x de telle façon que l'énergie du minimum soit minimale. On obtient ainsi x = 1,15 et y = 2,7 ce qui donne les valeurs trouvées par Bohr en 1913 de 2,7 eV pour l’énergie de liaison et de 0,6 Å pour l'écartement des protons. La précision du calcul est certes médiocre puisque les valeurs expérimentales sont, respectivement de 4,5 eV et de 0,74 Å. On trouvera des méthodes plus perfectionnées basées sur les orbitales moléculaires.

Liaisons dans les formules chimiques[modifier | modifier le code]

Longueur de liaisons en pm
et énergies de liaisons en kJ/mol.

La longueur des liaisons peut être convertie en Å
en divisant par 100 (1 Å = 100 pm).
Source [4].
Liaison Longueur
(pm)
Énergie
(kJ/mol)
H — Hydrogène
H–H 74 436
H–C 109 413
H–N 101 391
H–O 96 366
H–F 92 568
H–Cl 127 432
H–Br 141 366
C — Carbone
C–H 109 413
C–C 154 348
C=C 134 614
C≡C 120 839
C–N 147 308
C–O 143 360
C–F 135 488
C–Cl 177 330
C–Br 194 288
C–I 214 216
C–S 182 272
N — Azote
N–H 101 391
N–C 147 308
N–N 145 170
N≡N 110 945
O — Oxygène
O–H 96 366
O–C 143 360
O–O 148 145
O=O 121 498
F, Cl, Br, I — Halogènes
F–H 92 568
F–F 142 158
F–C 135 488
Cl–H 127 432
Cl–C 177 330
Cl–Cl 199 243
Br–H 141 366
Br–C 194 288
Br–Br 228 193
I–H 161 298
I–C 214 216
I–I 267 151
S — Soufre
C–S 182 272
Article détaillé : Représentation des molécules.

Comme les atomes, les molécules et leurs orbitales sont tridimensionnels, il est difficile d'utiliser des techniques simples pour les représenter. Dans les formules moléculaires, la liaison chimique (orbitale liante) entre deux atomes est indiquée de différentes manières selon les nécessités.

Parfois, elle est totalement ignorée. Par exemple, en chimie organique, les chimistes sont parfois intéressés par le groupe fonctionnel de la molécule. Ainsi, selon la nécessité, la formule moléculaire de l'éthanol peut être écrite sur le papier

  • selon la configuration,
  • en trois dimensions,
  • en deux dimensions pleines ou en formule développée (indiquant toutes les liaisons sans se soucier des directions tridimensionnelles (forme 3D)). Exemple : Ethanol-structure.svg
  • en deux dimensions comprimées ou en formule semi-développée (les liaisons avec les atomes d'hydrogène sont comprimées: H-C-H donne CH2). Exemple : (CH3-CH2-OH),
  • en séparant le groupe fonctionnel du reste de la molécule. Exemple : C2H5OH
  • ou par constituants atomiques (formule brute). Exemple : C2H6O

Parfois, même le nuage d'électrons non-liant est indiqué. (avec les directions en 2 dimensions approximative. Par exemple le carbone élémentaire:: .'C.' Certains chimistes indiquent aussi les orbitales ; par exemple, l'hypothétique anion ethene-4 (\/C=C/\ -4) indiquant la possibilité de formation de liaison.

Les liaisons chimiques fortes[modifier | modifier le code]

Ces liaisons chimiques sont des forces intramoléculaires qui maintiennent les atomes ensemble dans les molécules et les solides. Ces liaisons peuvent être simples, doubles ou triples c'est-à-dire que le nombre d'électrons participants ( ou contenus dans l'orbitale de liaison) est de deux, quatre ou six. Un nombre pair d'électrons est habituel parce que les électrons appariés ont une énergie inférieure. En fait, des théories plus avancées sur les liaisons montrent que les liens ne sont pas toujours provoqués par un nombre entier d'électrons et, ce, dépendant de la distribution de ceux-ci dans chaque atome concerné dans la liaison. Par exemple, les carbones dans le benzène sont liés l'un à l'autre par environ 1,5 liaisons et les deux atomes dans l'oxyde nitrique NO sont connectés par environ 2,5 liaisons. Des liaisons quadruples ne sont pas impossibles mais sont très rares.

Le type de liaison dépend de la différence d'électronégativité et de la distribution des orbitales possibles dans les atomes liés. Plus l'électronégativité est importante, plus l'électron est attiré par un atome particulier et plus la liaison a un caractère ionique. Si l'électronégativité est faible, la liaison est covalente.

Liaison covalente[modifier | modifier le code]

Article détaillé : Liaison covalente.
Article détaillé : Polarité.

La liaison covalente est l'interaction entre les atomes d'une molécule. Cette liaison peut être non polarisée, si les atomes ont pratiquement la même électronégativité, ou polarisée si la différence entre leurs électronégativités reste inférieure à 1,7 (valeur conventionnelle). Au-delà de cette valeur, l'interaction est dite ionique. Une liaison covalente (polarisée ou non) peut être simple, double ou triple.

  • Dans le modèle de Lewis, ces liaisons sont représentée respectivement par un, deux ou trois traits.
    • Exemple de liaison covalente non polaire : Cl-Cl, C-H, C=C.
    • Exemple de liaison covalente polarisée : H-Cl, C-N, C=O.
  • Dans le modèle des orbitales moléculaires, ces liaisons sont décrites par des recouvrements de fonctions appelées orbitales atomiques (OA). Ces recouvrements se traduisent mathématiquement par des combinaisons linéaires de ces OA pour former des orbitales moléculaires (OM). Ces OM sont solutions de l'équation de Schrödinger relative à cette molécule.

Voir les articles Liaison σ et Liaison π pour l'explication CLOA habituelle des liaisons non-polaires.

Liaisons ioniques[modifier | modifier le code]

Article détaillé : Liaison ionique.

La liaison ionique est une interaction électrostatique entre ions, par exemple Na+ et Cl- au sein d'un cristal ionique. La différence d'électronégativité entre les atomes correspondant est supérieure à 1,7 ( cette limite est conventionnelle ; pour cet exemple, χ(Na) = 0,93 et χ(Cl) = 3,16). Cette interaction est considérée comme forte, les températures de fusion de ces cristaux sont en général élevées.

Des interactions entre ions polyatomiques peuvent également s'exercer. L'électronégativité de ces ions résultent d'une définition plus élaborée que celle des atomes, mais le principe de leur interactions au sein d'un cristal ionique est la même.

Liaison covalente coordinative[modifier | modifier le code]

Article détaillé : Liaison covalente.

La liaison covalente coordinative est une liaison spéciale dans laquelle les électrons de liaison proviennent d'un seul des atomes, mais sont approximativement partagés également par les deux dans une orbitale. Cette configuration est différente d'une liaison ionique avec faible différence d'électronégativité.

Liaisons chimiques délocalisées[modifier | modifier le code]

Il existe différentes situations pour lesquelles le modèle de Lewis avec mise en commun d'un doublet d'électron n'est pas pertinent. C'est le cas des molécules possédant des électrons délocalisés ou encore le cas de la liaison métallique.

Formes de résonance[modifier | modifier le code]

Certaines molécules et certains ions sont mal représentées par une formule de Lewis, et leurs propriétés ne sont pas celles attendues au regard de la formule de Lewis. C'est le cas, en chimie organique, du butadiène CH2=CH-CH=CH2 pour lequel les longueurs de liaisons C-C et C=C ne correspondent pas avec ces mêmes liaisons dans l'éthane et dans l'éthylène. C'est aussi le cas, en chimie inorganique, de l'ion sulfate SO42- qui contient deux liaisons S=O et deux liaisons S-O- alors que les quatre liaisons s'avèrent être identiques.

  • Dans le modèle de Lewis, il est nécessaire d'écrire plusieurs représentations (appelées formes de résonances).
  • Le modèle des orbitales moléculaires rend compte de ces phénomènes ; les calculs montrent que les niveaux d'énergie des OM font apparaître des stabilités dues à la résonance. ; ils font apparaître une répartition de charges (non entière) ne correspondant pas à celle prévues par le modèle de Lewis.

Liaison aromatique[modifier | modifier le code]

Article détaillé : Hydrocarbure aromatique.

Dans le cas de molécules respectant la règle de Hückel (molécule cyclique possédant 4n + 2 électrons délocalisés sur tout le cycle), la structure présente non seulement une stabilité correspondant à l'existence de plusieurs formes de résonance, mais aussi une stabilité supplémentaire appelée aromaticité.

C'est le cas du benzène, possédant 6 électrons délocalisés sur tout le cycle. Il s'agit des 6 électrons représentés par les trois doubles liaisons du modèle de Lewis. Les 6 liaisons du cycle ont même longueur alors que la formule de Lewis prévoit que les 3 liaisons C-C sont plus longues que les trois liaisons C=C. Historiquement, les chimistes ont pu constater ce phénomène avec les dichlorobenzène. En considérant la formule de Lewis, il devrait exister deux ortho-dichlorobenzène (les deux atomes de chlore étant portés soit par une liaison C=C, soit par une liaison C-C) alors qu'expérimentalement, un seul ortho-dichlorobenzène avait été observé.

  • Dans le modèle de Lewis, il est préférable de représenter le benzène avec un cercle plutôt qu'avec des liaisons simples et doubles pour constituer le cycle.
  • Dans le modèle des OM, le calcul fait apparaître une grande stabilité des OM liantes.

Dans le cas de composé aromatique hétérocyclique et de benzène substitué, les différences d'électronégativité des parties de l'anneau influencent le comportement chimique qui sinon serait équivalent.

Liaison métallique[modifier | modifier le code]

Article détaillé : Liaison métallique.

Le maintien en contact des atomes au sein d'un métal s'interprète suivant plusieurs modèles.

  • Le modèle le plus simple considère que le métal est constitué non pas d'atomes M, mais de cations M+ ayant mis en commun chacun un électron. C'est cette mise en commun, avec une délocalisation sur tout le cristal métallique, qui rend compte de la stabilité du cristal.
  • La théorie des bandes utilise la théorie plus élaborée des orbitales atomiques. On peut comprendre cette théorie en considérant :
    • dans un premier temps la molécule Li2 décrite par le recouvrement des orbitales atomiques 2s de chaque lithium. Il se forme ainsi une OM liante et une OM antiliante. Chaque électron 2s se retrouve dans l'OM liante, d'où une stabilité de l'édifice.
    • dans un second temps, on considère la molécule Li3 où 3 OA 2s sont mises en commun. Il se forme 3 OM, avec les mêmes conclusions que pour Li2.
    • enfin, avec la molécule Lin, n très grand, il se forme n/2 OM liantes et n/2 OM antiliantes. Ces groupes d'OM étant en très grand nombre dans un espace énergétique limité, elles forment une bande d'OM liantes et une bande d'OM antiliantes.

Cette théorie explique non seulement la stabilité du cristal métallique, mais également le pouvoir conducteur électrique du métal, les électrons se déplaçant dans les bandes délocalisés sur tout le cristal.

Liaisons intermoléculaires[modifier | modifier le code]

Liaison hydrogène[modifier | modifier le code]

Article détaillé : Liaison hydrogène.

La liaison hydrogène (HB) ou pont hydrogène est une liaison de faible intensité qui relie les molécules. Elle implique un atome d'hydrogène et un atome assez électronégatif (comme l'oxygène par exemple).

Liaison halogène[modifier | modifier le code]

Article détaillé : Liaison halogène.

La liaison halogène (XB) est une liaison de faible intensité qui peut se former entre un atome d'halogène déficient en densité électronique (acide de Lewis)(I > Br > Cl > F)et un autre atome riche en électron (O = N > S) (base de Lewis). On trouve un grand nombre d'exemples de liaisons halogènes dans les systèmes biologiques. Par exemple, l'interaction entre la thyroxine et son récepteur est du type liaison halogène.

Liaison de van der Waals[modifier | modifier le code]

Article détaillé : Force de van der Waals.

La liaison de van der Waals est une interaction de faible intensité entre atomes, molécules, ou une molécule et un cristal. Elle est due aux interactions entre les moments dipolaires électriques des deux atomes mis en jeu. Aucun électron n'est mis en commun entre les deux atomes.

Interactions entre cations et liaisons pi[modifier | modifier le code]

Article détaillé : Liaison π.

Électrons dans les liaisons chimiques[modifier | modifier le code]

Il existe trois types de liaisons chimiques : ce sont les liaisons simples, les liaisons doubles et les liaisons triples. Le type d'une liaison chimique dépend du nombre d'électrons partagé entre les atomes liés :

  • Les liaisons simples comportent 2 électrons partagés.
  • Les liaisons doubles comportent 4 électrons partagés.
  • Les liaisons triples comportent 6 électrons partagés.

Ce nombre d'électrons partagés entre les atomes dépend de la structure électronique de ces atomes et donc, des règles de l'octet et du duet.

Notes et références[modifier | modifier le code]

  1. a et b Pannetier G. (1969). Chimie physique générale. Atomistique, liaisons chimiques et structures moléculaires. Ed. Masson. p. 309.
  2. Pannetier G. (1969). Chimie physique générale. Atomistique, liaisons chimiques et structures moéculaires. Ed. Masson. p. 310.
  3. Bohr’s 1913 molecular model revisited, PNAS August 23, 2005 vol. 102 no. 34 11985–11988
  4. http://www.science.uwaterloo.ca/~cchieh/cact/c120/bondel.html

Voir aussi[modifier | modifier le code]

Articles connexes[modifier | modifier le code]

Liens externes[modifier | modifier le code]