Changement de base (algèbre linéaire)

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, plus précisément en algèbre linéaire, une matrice de passage (ou encore matrice de changement de base) permet d'écrire des formules de changement de base pour les représentations matricielles des vecteurs, des applications linéaires et des formes bilinéaires.

Définition[modifier | modifier le code]

Soient K un corps commutatif, E un K-espace vectoriel de dimension finie n, et B, B' deux bases de E.

La matrice de passage de B à B', notée , est la matrice représentative de l'application identité IdE, de E muni de la base B' dans E muni de la base B :

  • [1].

Autrement dit :

  • si un même vecteur de E a pour coordonnées les matrices colonnes X dans B et X' dans B', alors [1]

ou, ce qui est équivalent :

  • est égal à , c.-à-d. que ses colonnes sont les coordonnées des vecteurs de B', exprimés dans la base B[1].

Pour des raisons mnémotechniques, on qualifie B' de nouvelle base, B d'ancienne base. On observera que dans les deux premières descriptions données, les bases interviennent dans l'ordre opposé à celui de la terminologie. La troisième peut être détaillée ainsi : si et pour , alors

.

Changement de coordonnées pour un vecteur[modifier | modifier le code]

Comme déjà mentionné, si un vecteur de E a pour coordonnées X et X' dans deux bases B et B', alors .

Exemples[modifier | modifier le code]

Considérons l'espace euclidien3 muni de sa base canonique B(e1, e2, e3), « ancienne base », orthonormée directe.

Homothétie d'un facteur k.
Homothétie

La nouvelle base B'(e'1, e'2, e'3) est obtenue par une homothétie de facteur k. On a ainsi :

e'1 = k e1 ;
e'2 = k e2 ;
e'3 = k e3.

La matrice de passage s'écrit

Soit un vecteur x de composantes (X1, X2, X3) dans B et (X'1, X'2, X'3) dans B'. On a :

Rotation d'un angle α autour de e3.
Rotation de la base

La nouvelle base B'(e'1, e'2, e'3) est obtenue par rotation d'un angle α autour de l'axe e3. On a ainsi :

e'1 = cos(α) e1 + sin(α) e2 ;
e'2 = –sin(α) e1 + cos(α) e2 ;
e'3 = e3.

La matrice de passage s'écrit

Soit un vecteur x de composantes (X1, X2, X3) dans B et (X'1, X'2, X'3) dans B'. On a :

Inverse[modifier | modifier le code]

Soient B et B' deux bases de E. Alors est inversible et

.

En effet, d'après la règle de calcul de la matrice d'une composée :

.

Exemples[modifier | modifier le code]

Reprenons les exemples ci-dessus.

Homothétie

La matrice inverse s'obtient simplement en remplaçant k par 1/k, soit :

et donc

.
Rotation

La matrice inverse s'obtient simplement en remplaçant α par –α, soit :

(on remarque que c'est la transposée, PB'B = tPBB') et donc

.

Changement de matrice pour une application linéaire[modifier | modifier le code]

Soient deux bases de E et deux bases de F, une application linéaire, de matrices A dans les bases et B dans les bases , alors

P est la matrice de passage de à et
Q est la matrice de passage de à .

En effet, .

Les matrices A et B sont alors dites équivalentes.

Dans le cas particulier d'un endomorphisme (i.e. F = E), si l'on choisit et (donc Q = P), les matrices A et B sont dites semblables.

Changement de matrice pour une forme bilinéaire[modifier | modifier le code]

Cas usuel[modifier | modifier le code]

Soient deux bases de E, P la matrice de passage de à , et φ une forme bilinéaire sur E, de matrices A dans et B dans . Alors[2]

,

tP désigne la matrice transposée de P.

Les matrices A et B sont alors dites congruentes.

Variantes[modifier | modifier le code]

Il arrive que l'on considère une forme bilinéaire φ définie non pas sur E×E mais sur E×F où F est un espace vectoriel non nécessairement égal à E. Si sont deux bases de E avec matrice de passage P, et deux bases de F avec matrice de passage Q, la formule de changement de bases devient :

.

On peut également considérer une forme sesquilinéaire au lieu d'une forme bilinéaire. Dans ce cas, il faut remplacer, dans les formules, la transposée de la matrice de passage par sa matrice adjointe.

Notes et références[modifier | modifier le code]

  1. a b et c Daniel Guinin et Bernard Joppin, Algèbre et géométrie PCSI, Bréal, (lire en ligne), p. 356.
  2. Voir par exemple cette démonstration sur Wikiversité.