Carré parfait

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher
image illustrant l’algèbre
Cet article est une ébauche concernant l’algèbre.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

En mathématiques, un carré parfait (un carré s'il n'y a pas ambiguïté) est le carré d'un entier. Les 50 premiers carrés (suite A000290 de l'OEIS) sont :

02 = 0 52 = 25 102 = 100 152 = 225 202 = 400 252 = 625 302 = 900 352 = 1 225 402 = 1 600 452 = 2 025
12 = 1 62 = 36 112 = 121 162 = 256 212 = 441 262 = 676 312 = 961 362 = 1 296 412 = 1 681 462 = 2 116
22 = 4 72 = 49 122 = 144 172 = 289 222 = 484 272 = 729 322 = 1 024 372 = 1 369 422 = 1 764 472 = 2 209
32 = 9 82 = 64 132 = 169 182 = 324 232 = 529 282 = 784 332 = 1 089 382 = 1 444 432 = 1 849 482 = 2 304
42 = 16 92 = 81 142 = 196 192 = 361 242 = 576 292 = 841 342 = 1 156 392 = 1 521 442 = 1 936 492 = 2 401

Dans notre système de numération habituel, le chiffre des unités d'un carré parfait ne peut être que 0, 1, 4, 5, 6 ou 9. En base douze, il serait obligatoirement 0, 1, 4 ou 9.

Nombre carré[modifier | modifier le code]

Un nombre carré est un nombre polygonal (donc entier strictement positif) qui peut être représenté géométriquement par un carré. Par exemple, 9 est un nombre carré puisqu'il peut être représenté par un carré de 3 × 3 points. Les nombres carrés sont donc les carrés parfaits non nuls, le n-ième étant n2.

Le produit de deux nombres carrés est un nombre carré.

La représentation du premier nombre carré est un point. Celle du n-ième s'obtient en bordant deux côtés consécutifs du carré précédent par 2n – 1 points :

La somme du 3e nombre triangulaire et du 4e est le 4e nombre carré.

Le n-ième nombre carré est donc la somme des n premiers nombres impairs :

Il est aussi égal à la somme du n-ième nombre triangulaire et du précédent :

La somme de deux nombres carrés consécutifs est un nombre carré centré.

La somme des n premiers nombres carrés est égale au n-ième nombre pyramidal carré :

Les mathématiciens se sont souvent intéressés à certaines curiosités concernant les nombres carrés. La plus connue, notamment pour sa référence au théorème de Pythagore, est l'égalité 32 + 42 = 52, qui débute l'étude des triplets pythagoriciens. D'après le théorème de Fermat-Wiles, démontré en 1995, il n'y a que les nombres carrés qui peuvent faire une identité comme celle des triplets pythagoriciens. Par exemple, il n'y a aucune solution à a3 + b3 = c3 avec a, b et c entiers non nuls.

Voir aussi[modifier | modifier le code]

Sur les autres projets Wikimedia :

Articles connexes[modifier | modifier le code]

Lien externe[modifier | modifier le code]

Carré parfait sur recreomath.qc.ca