Hyperplan

Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher

En mathématiques et plus particulièrement en algèbre linéaire et géométrie, les hyperplans d'un espace vectoriel E de dimension quelconque sont la généralisation des plans vectoriels d'un espace de dimension 3 : ce sont les sous-espaces vectoriels de codimension 1 dans E. Si E est de dimension finie n, ses hyperplans sont donc ses sous-espaces de dimension n – 1 : par exemple l'espace nul dans une droite vectorielle, une droite vectorielle dans un plan vectoriel, etc.

Caractérisation[modifier | modifier le code]

Article détaillé : Forme linéaire.

Soient E un espace vectoriel et H un sous-espace. Les propositions suivantes sont équivalentes :

  • H est un hyperplan de E.
  • Il existe dans E une droite vectorielle supplémentaire de H.
  • Toute droite vectorielle de E engendrée par un vecteur n'appartenant pas à H est un supplémentaire de H.
  • H est le noyau d'une forme linéaire non nulle.
  • H est défini par une équation linéaire homogène non triviale.

Exemples[modifier | modifier le code]

  • Dans le K-espace vectoriel des matrices carrées d'ordre n à coefficients dans un corps K, l'ensemble des matrices de trace nulle est un hyperplan.
  • Dans le K-espace vectoriel K[X] des polynômes à une indéterminée, l'ensemble des polynômes divisibles par X est un hyperplan, car c'est le noyau de la forme linéaire PP(0).

Représentation des sous-espaces[modifier | modifier le code]

Pour tout entier naturel q et dans tout espace vectoriel (de dimension finie ou infinie), les sous-espaces de codimension q sont exactement les intersections de q hyperplans « indépendants ».

Hyperplans affines[modifier | modifier le code]