« Lymphocyte NK » : différence entre les versions

Un article de Wikipédia, l'encyclopédie libre.
Contenu supprimé Contenu ajouté
Mirmillon (discuter | contributions)
Mirmillon (discuter | contributions)
Ligne 33 : Ligne 33 :


=== Rôle des récepteurs d'activation codés par la lignée germinale ===
=== Rôle des récepteurs d'activation codés par la lignée germinale ===
La forte cytotoxicité anti-tumorale est le résultat de sécrétion de quantité importante de cytokines pro-inflammatoires <ref>{{Article |prénom1=Kamalakannan |nom1=Rajasekaran |prénom2=Matthew J. |nom2=Riese |prénom3=Sridhar |nom3=Rao |prénom4=Li |nom4=Wang |titre=Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy |périodique=Frontiers in Immunology |volume=7 |date=2016-05-12 |issn=1664-3224 |pmid=27242783 |pmcid=PMC4863891 |doi=10.3389/fimmu.2016.00176 |lire en ligne=http://journal.frontiersin.org/Article/10.3389/fimmu.2016.00176/abstract |consulté le=2020-05-04 }}</ref>. La cellule NK possède multiples récepteurs d'activation des cellules NK codés par la lignée germinale tels que NKG2D, NCR1, NCR2, NCR3, NKG2C, CD244, Ly49D et Ly49H. L'expression de plus d'un récepteurs d'activation qui reconnaissent les ligands du non soi ou pathogènes confère aux cellules NK des capacités innées de médiation des fonctions effectrices. En raison de l'expression de multiples récepteurs d'activation, les cellules NK doivent suivre un programme de développement distinct pour éviter une mauvaise reconnaissance de «soi» conduisant à des réponses auto-immunes. La nature variée des récepteurs d'activation et l'absence de domaines de signalisation dans leurs parties cytoplasmiques nécessitent l'association et le recrutement de co récepteurs pour la transduction du signal <ref>{{Article |langue=en |prénom1=Lewis L |nom1=Lanier |titre=Up on the tightrope: natural killer cell activation and inhibition |périodique=Nature Immunology |volume=9 |numéro=5 |date=2008-05 |issn=1529-2908 |issn2=1529-2916 |pmid=18425106 |pmcid=PMC2669298 |doi=10.1038/ni1581 |lire en ligne=http://www.nature.com/articles/ni1581 |consulté le=2020-05-04 |pages=495–502 }}</ref>. Les molécules co-réceptrices qui propagent la signalisation des récepteurs NK comprennent FcεRIγ, CD3ζ et le DAP12 qui signalent via des motifs d'activation à base de tyrosine (ITAM) contenus dans leurs domaines cytoplasmiques. Les récepteurs d'activation qui utilisent ces co-récepteurs incluent CD16, NCR1, Ly49D, Ly49H et NKG2D <ref>{{Article |langue=en |prénom1=Hisashi |nom1=Arase |prénom2=Tadahiro |nom2=Suenaga |prénom3=Noriko |nom3=Arase |prénom4=Yoshimitsu |nom4=Kimura |titre=Negative Regulation of Expression and Function of FcγRIII by CD3ζ in Murine NK Cells |périodique=The Journal of Immunology |volume=166 |numéro=1 |date=2001-01-01 |issn=0022-1767 |issn2=1550-6606 |doi=10.4049/jimmunol.166.1.21 |lire en ligne=http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.166.1.21 |consulté le=2020-05-04 |pages=21–25 }}</ref> <ref>{{Article |prénom1=Raffaella |nom1=Augugliaro |prénom2=Silvia |nom2=Parolini |prénom3=Roberta |nom3=Castriconi |prénom4=Emanuela |nom4=Marcenaro |titre=Selective cross-talk among natural cytotoxicity receptors in human natural killer cells |périodique=European Journal of Immunology |volume=33 |numéro=5 |date=2003-05 |doi=10.1002/eji.200323896 |lire en ligne=http://doi.wiley.com/10.1002/eji.200323896 |consulté le=2020-05-04 |pages=1235–1241 }}</ref> <ref>{{Article |langue=en |prénom1=Rebecca M. |nom1=May |prénom2=Mariko |nom2=Okumura |prénom3=Chin-Jung |nom3=Hsu |prénom4=Hamid |nom4=Bassiri |titre=Murine natural killer immunoreceptors use distinct proximal signaling complexes to direct cell function |périodique=Blood |volume=121 |numéro=16 |date=2013-04-18 |issn=0006-4971 |issn2=1528-0020 |pmid=23407547 |pmcid=PMC3630829 |doi=10.1182/blood-2012-12-474361 |lire en ligne=https://ashpublications.org/blood/article/121/16/3135/31630/Murine-natural-killer-immunoreceptors-use-distinct |consulté le=2020-05-04 |pages=3135–3146 }}</ref> <ref>{{Article |langue=en |prénom1=David B. |nom1=Rosen |prénom2=Manabu |nom2=Araki |prénom3=Jessica A. |nom3=Hamerman |prénom4=Taian |nom4=Chen |titre=A Structural Basis for the Association of DAP12 with Mouse, but Not Human, NKG2D |périodique=The Journal of Immunology |volume=173 |numéro=4 |date=2004-08-15 |issn=0022-1767 |issn2=1550-6606 |doi=10.4049/jimmunol.173.4.2470 |lire en ligne=http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.173.4.2470 |consulté le=2020-05-04 |pages=2470–2478 }}</ref> . Cependant, Ly49H et NKG2D peuvent également signaler via le motif YINM présent dans le co-récepteur, DAP10 <ref>{{Article |langue=en |prénom1=Alejandro |nom1=López-Soto |prénom2=Leticia |nom2=Huergo-Zapico |prénom3=Andrea |nom3=Acebes-Huerta |prénom4=Mónica |nom4=Villa-Alvarez |titre=NKG2D signaling in cancer immunosurveillance: NKG2D signaling |périodique=International Journal of Cancer |volume=136 |numéro=8 |date=2015-04-15 |doi=10.1002/ijc.28775 |lire en ligne=http://doi.wiley.com/10.1002/ijc.28775 |consulté le=2020-05-04 |pages=1741–1750 }}</ref><ref>Smith KM, Wu J, Bakker AB, Phillips JH, Lanier LL. Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. ''J Immunol'' (1998) 161:7–10.</ref>.<ref>{{Article |langue=en |prénom1=Mark T. |nom1=Orr |prénom2=Joseph C. |nom2=Sun |prénom3=David G.T. |nom3=Hesslein |prénom4=Hisashi |nom4=Arase |titre=Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection |périodique=Journal of Experimental Medicine |volume=206 |numéro=4 |date=2009-04-13 |issn=1540-9538 |issn2=0022-1007 |pmid=19332875 |pmcid=PMC2715124 |doi=10.1084/jem.20090168 |lire en ligne=https://rupress.org/jem/article/206/4/807/40592/Ly49H-signaling-through-DAP10-is-essential-for |consulté le=2020-05-04 |pages=807–817 }}</ref> L'activation des cellules NK à travers ces co-récepteurs se produit en interagissant avec des ligands cellulaires et étrangers distincts présents sur les cellules malades et forme la base de la réponse immunitaire médiée par les cellules NK dans de multiples contextes.


==Fonctions des cellules NK==
==Fonctions des cellules NK==

Version du 4 mai 2020 à 10:35

Lymphocyte NK humain

L'existence d'un lymphocyte cytotoxique naturel ou lymphocytes NK (sigle de l'anglais Natural Killer, signifiant « tueur naturel ») aussi appelés cellules tueuses naturelles ayant des propriétés anti-tumorales intrinsèques et innées a été découvert lors d'expérience  avec des lymphocyte T [1]. Ces observations originales ont été faites dans les années 1960 [2],[3] et, en 10 ans, les chercheurs ont commencé à explorer une population de lymphocytes innés auparavant inconnue connue aujourd'hui sous le nom de cellules tueuses naturelles (NK) [4],[5].[6],[7] Comme leur nom l'indique, les cellules NK sont constutivement cytotoxiques et, contrairement aux cellules T cytotoxiques, ne nécessitent pas d'exposition à l'antigène préalable pour médier leurs effets anti-tumoraux [4],[7]. L'activité des cellules NK a d'abord été observée dans les cellules mononucléaires du sang périphérique humain [8],[9]; cependant, ces gros lymphocytes granuleux résident dans plusieurs tissus lymphoïdes et non lymphoïdes, notamment la moelle osseuse , les ganglions lymphatiques , la peau, l'intestin, les amygdales, le foie et les poumons [10].

La différence fondamentale la cytotoxicité du lymphocyte T CD8+ et la cytotoxicité du lymphocytes NK est que la cellule T CD8+ nécessite une activation par le T CD4+ auxiliaire pour exprimer sa cytotoxicité entraînant une synthèse de récepteur spécifique d'une espèce microbienne par recombinaison somatique. Les récepteurs du lymphocyte NK sont synthétisés au cours du développement et de la maturation de la cellule puis ceux ci ne subiront plus de changemen[11]t. Les cellules NK utilisent des récepteurs inhibiteurs (récepteur tueur d'immunoglobuline et Ly49) pour se développer, mûrir et reconnaître le «soi» du «non-soi».

Ce sont de grands lymphocytes granuleux (par opposition aux « petits lymphocytes »), non T (CD3-) non B (CD19-), caractérisés chez l'humain par les marqueurs CD56, CD16 et NK. Les cellules NK représentent environ 5 à 16 % des lymphocytes humains[12] et appartiennent au système immunitaire inné notamment en raison de leurs récepteurs invariants.

Développement et maturation fonctionnelle des cellules NK

Origine des cellules tueuses naturelles humaines.

On pensait initialement que les cellules NK se développaient exclusivement dans la moelle osseuse. Cependant, des preuves récentes chez l'homme et la souris suggèrent qu'elles peuvent également se développer et mûrir dans les tissus lymphoïdes secondaires y compris les amygdales, la rate et les ganglions lymphatiques [13]. Les progéniteurs cellulaires et les populations intermédiaires qui donnent naissance aux cellules NK sont définis par l'expression différentielle de marqueurs de surface spécifiques à la lignée [14]. Les cellules tueuses naturelles représentent 5 à 20% des lymphocytes circulants chez l'homme [15].Chez l'homme, des sous-ensembles de cellules NK expriment le récepteur Fc activateur, CD16 et la plupart expriment CD56 [molécule d'adhésion des cellules neurales (NCAM) ou Leu-19] [16],[17]

Différentes étapes

Les cellules souches hématopoïétiques multipotentes donnent naissance à tous les leucocytes et globules rouges dont une branche constitue le progéniteur lymphoïde commun Les progéniteur lymphoïde commun donnent naissance à des cellules lymphoïdes innées Pro-B, Pre-T,et des lignées Pre-NKP[18] . Des travaux récents ont permis de délimiter un total de six étapes du développement des cellules NK humaines en fonction de leur développement à la fois moelle osseuse et ganglion lymphatique [19],[20]

Cellules immatures NK

Cellules matures NK

Schéma de développement de cellules tueuses naturelles humaines dans la moelle osseuse et les ganglions lymphatiques.

On distingue deux types de cellules NK chez l'être humain, regroupées selon la densité des marqueurs membranaires CD56 et CD16 :

  • Les cellules NK CD56dim CD16+ : ces cellules représentent plus de 90 % des cellules NK retrouvées dans le sang, le foie et la rate mais moins de 10 % dans les tonsilles et les ganglions lymphatiques. Elles sont caractérisées par un taux de prolifération cellulaire très faible mais une très forte cytotoxicité.
  • Les cellules NK CD56bright CD16dim/- : ces cellules ne représentent que 10 % des cellules NK du sang, mais à l'inverse, représentent 90 % des cellules NK des ganglions et tonsilles. Elles sont l'exact opposé que les précédentes de par leurs caractéristiques, à savoir qu'elles produisent beaucoup de cytokines, leur prolifération est beaucoup plus élevée mais en revanche, leur cytotoxicité est moindre[21].

Rôle des cytokines dans le développement des cellules NK

Les cytokines sont des médiateurs inflammatoires essentiels qui contrôlent de multiples aspects de la biologie des cellules NK. Les cellules NK expriment les récepteurs des cytokines au début de leur développement [22] et nécessitent une signalisation à travers la chaîne gamma commune (γc) pour leur développement, leur homéostasie et leur fonction [23]. La chaîne γc (CD132) est une glycoprotéine transmembranaire qui sert de sous-unité de signalisation pour IL-2, IL-4, IL-7, IL-9, IL-15 et IL-21 [24]. Bien que ces cytokines présentent une certaine redondance fonctionnelle, leurs fonctions spécifiques aux cellules au cours d'une réponse immunitaire sont déterminées par l'expression de récepteurs distincts [25].[26]

Rôle des récepteurs gamma dans le développement des cellules tueuses naturelles (NK)

L'interleukine-2 et l'IL-15 sont des membres fonctionnellement apparentés de la famille γc des cytokines en ce qui concerne leurs interactions avec les récepteurs [27], .L'IL-2Rα (CD25) est exprimée sur les cellules NK activées et augmente considérablement leur affinité pour l'IL-2 qui stimule leur prolifération et la production de molécules lytiques telles que la perforine et le granzyme B [28]. Étant donné que les cellules NK se trouvent près des zones de cellules T dans les tissus lymphoïdes secondaires [10], l'IL-2 dérivée des cellules T peut faciliter un échange efficace vitale entre les lymphocytes innés et adaptatifs pendant une infection [29].

l'IL-15 est unique à cet égard. L'IL-15 interagit avec les cellules T Pour que cela se produise, l'IL-15 soluble se lie à l'IL-15Rα sur la surface des cellules qui présentent ce complexe aux cellules NK exprimant les hétérodimères IL2-Rβ / γc [30]. L'IL-15 peut être présentée par les cellules dendritiques et les macrophages ainsi que par les cellules non hématopoïétiques, y compris les cellules stromales et les cellules épithéliales [31]. IL-21 synergise avec IL-2 pour augmenter l'expression de NKG2A, CD25, CD86, CD69, Perforin et Granzyme B et ainsi augmenter la cytotoxicité [32]. Ces cytokines qui utilisent les récepteurs à base de γc sont le lien obligatoire entre les cellules NK et les cellules qui les produisent. Par exemple, les cellules T auxiliaires qui produisent de l'IL-21 peuvent réguler les niveaux d'expression des récepteurs d'activation ou du contenu cytolytique dans les cellules NK. De même, les CD qui produisent IL-15 jouent un rôle essentiel dans la prolifération et l'amorçage des cellules NK

Apprentissage du soi et du non soi par la cellule NK

Rôle des récepteurs d'activation codés par la lignée germinale

La forte cytotoxicité anti-tumorale est le résultat de sécrétion de quantité importante de cytokines pro-inflammatoires [33]. La cellule NK possède multiples récepteurs d'activation des cellules NK codés par la lignée germinale tels que NKG2D, NCR1, NCR2, NCR3, NKG2C, CD244, Ly49D et Ly49H. L'expression de plus d'un récepteurs d'activation qui reconnaissent les ligands du non soi ou pathogènes confère aux cellules NK des capacités innées de médiation des fonctions effectrices. En raison de l'expression de multiples récepteurs d'activation, les cellules NK doivent suivre un programme de développement distinct pour éviter une mauvaise reconnaissance de «soi» conduisant à des réponses auto-immunes. La nature variée des récepteurs d'activation et l'absence de domaines de signalisation dans leurs parties cytoplasmiques nécessitent l'association et le recrutement de co récepteurs pour la transduction du signal [34]. Les molécules co-réceptrices qui propagent la signalisation des récepteurs NK comprennent FcεRIγ, CD3ζ et le DAP12 qui signalent via des motifs d'activation à base de tyrosine (ITAM) contenus dans leurs domaines cytoplasmiques. Les récepteurs d'activation qui utilisent ces co-récepteurs incluent CD16, NCR1, Ly49D, Ly49H et NKG2D [35] [36] [37] [38] . Cependant, Ly49H et NKG2D peuvent également signaler via le motif YINM présent dans le co-récepteur, DAP10 [39][40].[41] L'activation des cellules NK à travers ces co-récepteurs se produit en interagissant avec des ligands cellulaires et étrangers distincts présents sur les cellules malades et forme la base de la réponse immunitaire médiée par les cellules NK dans de multiples contextes.

Fonctions des cellules NK

Les cellules tueuses naturelles médient leurs effets grâce à deux fonctions effectrices essentielles. Premièrement, les cellules NK sont des lymphocytes cytotoxiques qui peuvent directement lyser des cellules qui ont subi une transformation maligne ou qui ont été infectées par un virus ou un autre pathogène intracellulaire [42]. La fonction cytolytique des cellules NK peut s'initier à travers une variété de processus, y compris la dégranulation et la stimulation des récepteurs de la mort, et est essentielle pour l'élimination des cellules malades et dysfonctionnelles [43],[44]. Deuxièmement, les cellules NK peuvent produire une variété de cytokines inflammatoires en réponse à la stimulation des récepteurs  et l'activation induite par les cytokines inflammatoires [45],[46]. Ces fonctions effectrices des cellules NK sont des composants essentiels de la réponse immunitaire et sont les principaux mécanismes par lesquels les cellules NK assurent l'immunité .

Cytotoxicité

Rôles cytotoxiques par activation des récepteurs NK

Il existe sur la membrane cellulaire des NK des récepteurs activateurs (portant des séquences « ITAM ») : immunoreceptor tyrosine-based activation motif) ou inhibiteurs (portant des séquences « ITIM » : immunoreceptor tyrosine-based inhibition motif). Lorsqu'un NK rencontre une autre cellule, la lyse de cette cellule ne se produira que si les signaux d'activation surpassent les signaux d'inhibition. Le principal signal inhibiteur est produit par les récepteurs KIR (acronyme de l'anglais « killer cell Ig-like receptor »), portés par le NK, qui reconnaissent les molécules du CMH de classe I. L'activation d'un seul type de récepteur KIR suffit à empêcher l'activation du NK alors qu'il faut toujours plusieurs signaux activateurs différents pour provoquer la dégranulation du NK et la mort de la cellule non reconnue. Les signaux d'activation sont variés, et comportent notamment des protéines produites par des cellules stressées, par exemple lors d'une infection. Ce système d'équilibre dynamique activation / inhibition permet en pratique aux cellules NK de lyser toutes cellules dépourvues des molécules du CMH de classe I (dont théoriquement tous parasites extracellulaires) ou cellules infectées par des virus ou des bactéries tout en épargnant les cellules saines. La lyse des cellules cibles se fait principalement par les voies perforine / granzyme et l'interféron gamma.

Cytotoxicité cellulaire dépendante des anticorps

L'ADCC ou antibody-dependent cell-mediated cytotoxicity, est permise par l'expression du marqueur CD16 à la surface des cellules NK. Le CD16, nommé aussi FcγRIII, est un récepteur de fragment constant d'immunoglobulines telles que l'IgG1 et l'IgG3. Il semblerait que les cellules CD56bright, qui expriment peu de CD16, soient moins efficaces dans les mécanismes d'ADCC que les cellules CD56dim.

Une autre voie par laquelle les cellules NK reconnaissent les cellules cibles potentielles dépend du fait que des cellules tumorales et des cellules infectées par certains virus exposent des antigènes contre lesquels le système immunitaire a développé une réponse anticorps, de telle façon que des anticorps antitumoraux ou antiviraux soient liés à leur surface. Étant donné que les cellules NK expriment le CD16, qui est un récepteur membranaire pour l'extrémité carboxy-terminale de la molécule d'IgG, appelée Fc (cf. anticorps), elles peuvent fixer à ces anticorps et, par la suite, lyser les cellules ainsi marquées. Ceci est un exemple d'un processus connu sous le nom de cytotoxicité cellulaire dépendante des anticorps (ADCC, antibody-dependent cell-mediated cytotoxicity)

Rôle d'un «troisième signal» dans l'activation des cellules tueuses naturelles.

Sécrétion de cytokines

  • Microbicide : les cellules NK sécrètent de l'IFN-γ ayant notamment pour effet l'activation des macrophages qui, en réponse à cette stimulation produiront des molécules solubles telles que le monoxyde d'azote, connue pour ses effets de destruction de micro-organismes, par exemple.
  • Anti-tumoral : le TNF-β libéré par les granules des cellules NK activées, ont un effet anti-tumoral. Le TNF-β induit dans les cellules tumorales l'activation des voies de l'apoptose. Les cellules NK sécréteraient également des protéines FasR afin d'induire la mort de cellules tumorales[47].

Rôle des cytokines pro-inflammatoires qui fournissent un «troisième signal» aux cellules NK

Les cellules NK dans la santé et la maladie

Cellules NK dans la maladie

Rôle des cellules tueuses naturelles dans la santé et la maladie.

Rôle des cellules NK dans l'infection virale ou bactérienne

Il a été montré que les cellules NK pouvaient être activées par une interaction directe entre les peptides viraux (présents en surface du virus) et des récepteurs membranaires retrouvés sur la cellule NK. Pour exemple, le récepteur NKp46 avec l’hémagglutinine du virus influenza (virus de la grippe) ou l’hémagglutinine-neuramidase du virus Sendai[48]. De la même manière, l’interaction du récepteur NKp44 avec la glycoprotéine E du DENV pourrait activer les cellules NK[49].

Bien avant les cellules T CD8, les cellules NK sont activées dans la réponse immune antivirale. Dans les quelques heures suivant l'infection virale, un pic de cytokines telles que l'IL-12 et les interférons de type I est retrouvé dans la sérologie[50]. En effet, la présence d'interférons est spécifique d'une infection virale : ce sont des cytokines antivirales synthétisables par divers types cellulaires dans l'organisme. Les IFN I induisent l'activation de voies de signalisation permettant en amont la synthèse de protéines antivirales. De plus, les IFN I ont un rôle important dans l'activation des cellules NK (notamment en stimulant leur synthèse de protéines cytotoxiques) et leur prolifération.

Les cellules NK sont aussi activées par l’IL-12 et le TNF-α produits par les macrophages au début de nombreuses infections et qui induisent une production d'autres cytokines, majoritairement l’IFN-γ[51]. Cette activation des cellules NK durant le début de l’infection virale permet de bloquer ou tout au moins de contenir l'infection, pendant qu'une réponse immune adaptative, plus spécifique au type de virus, se met en place.

Les cellules dendritiques sont aussi connues pour activer les cellules NK dans certains cas. Elles sécrètent l'IL-12, l'IL-18 et l'IFN-I qui activent les fonctions des cellules NK[52].

Une fois activée, la cellule NK agit en trois phases majeures que l'on peut découper de la manière qui suit :

1. la production de cytokines ;

2. le relargage de granules cytotoxiques (granzymes et perforines, essentiellement) ;

3. la lyse de la cellule cible.

Rôle des cellules NK dans la lymphohistiocytose hémophagocytaire

La biologie des cellules NK est d'un intérêt particulier dans la lymphohistiocytose hémophagocytaire primaire (pHLH pour les anglophones) car tous les défauts génétiques associés à ce trouble entraînent une diminution de la capacité cytotoxique des cellules NK et des lymphocytes T ; des tests de destruction des cellules NK sont utilisés cliniquement pour le diagnostic de HLH. L'importance des altérations de la fonction des cellules NK semble liée à la pathogenèse de la lymphohistiocytose hémophagocytaire[53].

Cellules NK dans la maladie

Fonctions antitumorales

Traitement et cellule NK

Les lymphocytes NK CAR sont des lymphocytes NK génétiquement modifiés pour cibler des antigènes spécifiques situés à la surface des cellules cancéreuses[54]. C'est un axe de recherche en immunothérapie. Cette approche semble présenter moins d'effets secondaires indésirables que le traitement par lymphocytes T CAR[55],[56],[57].

Pathologies en rapport avec les cellules NK

Déficits en lymphocytes NK

Certaines maladies comportent une diminution du nombre global de ces cellules. D'autres ont une déficience de leur fonction tout en conservant un nombre normal. Toutes entraînent un déficit immunitaire.

La mutation du gène MCM4 entraîne un syndrome dont l'un des éléments est un déficit en cellules NK[58]. Celle des gènes GATA2[59] et RTEL1[60] comporte également une lymphopénie concernant ces cellules. D'autres mutations, par exemple concernant le CD16[61] ou l'IRF8[62] , sont responsables d'un déficit fonctionnel.

Sources

Références

  1. (en) Robert K. Oldham, « Natural killer cells: Artifact to reality:: An odyssey in biology », CANCER AND METASTASIS REVIEW, vol. 2, no 4,‎ , p. 323–336 (ISSN 0167-7659 et 1573-7233, DOI 10.1007/BF00048565, lire en ligne, consulté le )
  2. Rosenau W, Moon HD. Lysis of homologous cells by sensitized lymphocytes in tissue culture. J Natl Cancer Inst (1961) 27:471–83.
  3. (en) H J Smith, « Antigenicity of carcinogen-induced and spontaneous tumours in inbred mice. », British Journal of Cancer, vol. 20, no 4,‎ , p. 831–837 (ISSN 0007-0920 et 1532-1827, PMID 5964614, PMCID PMC2008147, DOI 10.1038/bjc.1966.95, lire en ligne, consulté le )
  4. a et b (en) R. Kiessling, Eva Klein, H. Pross et H. Wigzell, « „Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell », European Journal of Immunology, vol. 5, no 2,‎ , p. 117–121 (DOI 10.1002/eji.1830050209, lire en ligne, consulté le )
  5. Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer (1975) 16:230–9.
  6. (en) Ronald B. Herberman, Myrthel E. Nunn et David H. Lavrin, « Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity », International Journal of Cancer, vol. 16, no 2,‎ , p. 216–229 (DOI 10.1002/ijc.2910160204, lire en ligne, consulté le )
  7. a et b (en) R. Kiessling, Eva Klein et H. Wigzell, « „Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype », European Journal of Immunology, vol. 5, no 2,‎ , p. 112–117 (DOI 10.1002/eji.1830050208, lire en ligne, consulté le )
  8. Oldham RK, Siwarski D, McCoy JL, Plata EJ, Herberman RB. Evaluation of a cell-mediated cytotoxicity assay utilizing 125 iododeoxyuridine-labeled tissue-culture target cells. Natl Cancer Inst Monogr (1973) 37:49–58.
  9. Pross HF, Jondal M. Cytotoxic lymphocytes from normal donors. A functional marker of human non-T lymphocytes. Clin Exp Immunol (1975) 21:226–35.
  10. a et b Paolo Carrega et Guido Ferlazzo, « Natural killer cell distribution and trafficking in human tissues », Frontiers in Immunology, vol. 3,‎ (ISSN 1664-3224, PMID 23230434, PMCID PMC3515878, DOI 10.3389/fimmu.2012.00347, lire en ligne, consulté le )
  11. Kiessling R, Klein E, Pross H, Wigzell H. (1975a). 'Natural' killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5: 117–121
  12. http://acces.ens-lyon.fr/biotic/biomol/enjeux/TGS/html/nk.htm#
  13. Steven D. Scoville, Aharon G. Freud et Michael A. Caligiuri, « Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells », Frontiers in Immunology, vol. 8,‎ (ISSN 1664-3224, PMID 28396671, PMCID PMC5366880, DOI 10.3389/fimmu.2017.00360, lire en ligne, consulté le )
  14. (en) Joseph C. Sun et Lewis L. Lanier, « NK cell development, homeostasis and function: parallels with CD8+ T cells », Nature Reviews Immunology, vol. 11, no 10,‎ , p. 645–657 (ISSN 1474-1733 et 1474-1741, PMID 21869816, PMCID PMC4408539, DOI 10.1038/nri3044, lire en ligne, consulté le )
  15. (en) Nathalie Jacobs, Langers, Renoux et Thiry, « Natural killer cells: role in local tumor growth and metastasis », Biologics: Targets and Therapy,‎ , p. 73 (ISSN 1177-5475, PMID 22532775, PMCID PMC3333822, DOI 10.2147/BTT.S23976, lire en ligne, consulté le )
  16. (en) L L Lanier, R Testi, J Bindl et J H Phillips, « Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. », The Journal of Experimental Medicine, vol. 169, no 6,‎ , p. 2233–2238 (ISSN 0022-1007 et 1540-9538, PMID 2471777, PMCID PMC2189344, DOI 10.1084/jem.169.6.2233, lire en ligne, consulté le )
  17. Lanier LL, Phillips JH, Hackett J Jr, Tutt M, Kumar V. Natural killer cells: definition of a cell type rather than a function. J Immunol (1986) 137:2735–9.
  18. (en) Motonari Kondo, Irving L. Weissman et Koichi Akashi, « Identification of Clonogenic Common Lymphoid Progenitors in Mouse Bone Marrow », Cell, vol. 91, no 5,‎ , p. 661–672 (DOI 10.1016/S0092-8674(00)80453-5, lire en ligne, consulté le )
  19. Steven D. Scoville, Aharon G. Freud et Michael A. Caligiuri, « Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells », Frontiers in Immunology, vol. 8,‎ (ISSN 1664-3224, PMID 28396671, PMCID PMC5366880, DOI 10.3389/fimmu.2017.00360, lire en ligne, consulté le )
  20. (en) Jianhua Yu, Aharon G. Freud et Michael A. Caligiuri, « Location and cellular stages of natural killer cell development », Trends in Immunology, vol. 34, no 12,‎ , p. 573–582 (PMID 24055329, PMCID PMC3852183, DOI 10.1016/j.it.2013.07.005, lire en ligne, consulté le )
  21. Cooper MA1, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001 Nov;22(11):633-40
  22. (en) Eleftheria E. Rosmaraki, Iyadh Douagi, Claude Roth et Francesco Colucci, « Identification of committed NK cell progenitors in adult murine bone marrow », European Journal of Immunology, vol. 31, no 6,‎ , p. 1900–1909 (ISSN 1521-4141, DOI 10.1002/1521-4141(200106)31:63.0.CO;2-M, lire en ligne, consulté le )
  23. (en) Raffaella Meazza, Bruno Azzarone, Anna Maria Orengo et Silvano Ferrini, « Role of Common-Gamma Chain Cytokines in NK Cell Development and Function: Perspectives for Immunotherapy », Journal of Biomedicine and Biotechnology, vol. 2011,‎ , p. 1–16 (ISSN 1110-7243 et 1110-7251, PMID 21716670, PMCID PMC3118299, DOI 10.1155/2011/861920, lire en ligne, consulté le )
  24. (en) Martin J. Boulanger et K.Christopher Garcia, « Shared Cytokine Signaling Receptors: Structural Insights from the Gp130 System », dans Advances in Protein Chemistry, vol. 68, Elsevier, (ISBN 978-0-12-034268-6, DOI 10.1016/s0065-3233(04)68004-1, lire en ligne), p. 107–146
  25. (en) Kamran Ghoreschi, Arian Laurence et John J. O’Shea, « Janus kinases in immune cell signaling », Immunological Reviews, vol. 228, no 1,‎ , p. 273–287 (PMID 19290934, PMCID PMC2782696, DOI 10.1111/j.1600-065X.2008.00754.x, lire en ligne, consulté le )
  26. (en) Kotaro Suzuki, Hiroshi Nakajima, Yasushi Saito et Takashi Saito, « Janus kinase 3 (Jak3) is essential for common cytokine receptor γ chain (γc)-dependent signaling: comparative analysis of γc, Jak3, and γc and Jak3 double-deficient mice », International Immunology, vol. 12, no 2,‎ , p. 123–132 (ISSN 1460-2377 et 0953-8178, DOI 10.1093/intimm/12.2.123, lire en ligne, consulté le )
  27. (en) Geoffrey A Smith, Kenji Uchida, Arthur Weiss et Jack Taunton, « Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling », Nature Chemical Biology, vol. 12, no 5,‎ , p. 373–379 (ISSN 1552-4450 et 1552-4469, PMID 27018889, PMCID PMC4837022, DOI 10.1038/nchembio.2056, lire en ligne, consulté le )
  28. (en) Georg Gasteiger, Saskia Hemmers, Matthew A. Firth et Audrey Le Floc’h, « IL-2–dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells », The Journal of Experimental Medicine, vol. 210, no 6,‎ , p. 1167–1178 (ISSN 1540-9538 et 0022-1007, PMID 23650441, PMCID PMC3674692, DOI 10.1084/jem.20122462, lire en ligne, consulté le )
  29. (en) Zeguang Wu, Giada Frascaroli, Carina Bayer et Tatjana Schmal, « Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages », Journal of Virology, vol. 89, no 12,‎ , p. 6435–6441 (ISSN 0022-538X et 1098-5514, PMID 25855747, PMCID PMC4474314, DOI 10.1128/JVI.00435-15, lire en ligne, consulté le )
  30. (en) Sigrid Dubois, Jennifer Mariner, Thomas A Waldmann et Yutaka Tagaya, « IL-15Rα Recycles and Presents IL-15 In trans to Neighboring Cells », Immunity, vol. 17, no 5,‎ , p. 537–547 (DOI 10.1016/S1074-7613(02)00429-6, lire en ligne, consulté le )
  31. (en) Erwan Mortier, Jérôme Bernard, Ariane Plet et Yannick Jacques, « Natural, Proteolytic Release of a Soluble Form of Human IL-15 Receptor α-Chain That Behaves as a Specific, High Affinity IL-15 Antagonist », The Journal of Immunology, vol. 173, no 3,‎ , p. 1681–1688 (ISSN 0022-1767 et 1550-6606, DOI 10.4049/jimmunol.173.3.1681, lire en ligne, consulté le )
  32. (en) Kresten Skak, Klaus Stensgaard Frederiksen et Dorthe Lundsgaard, « Interleukin-21 activates human natural killer cells and modulates their surface receptor expression », Immunology, vol. 123, no 4,‎ , p. 575–583 (ISSN 0019-2805 et 1365-2567, PMID 18005035, PMCID PMC2433320, DOI 10.1111/j.1365-2567.2007.02730.x, lire en ligne, consulté le )
  33. Kamalakannan Rajasekaran, Matthew J. Riese, Sridhar Rao et Li Wang, « Signaling in Effector Lymphocytes: Insights toward Safer Immunotherapy », Frontiers in Immunology, vol. 7,‎ (ISSN 1664-3224, PMID 27242783, PMCID PMC4863891, DOI 10.3389/fimmu.2016.00176, lire en ligne, consulté le )
  34. (en) Lewis L Lanier, « Up on the tightrope: natural killer cell activation and inhibition », Nature Immunology, vol. 9, no 5,‎ , p. 495–502 (ISSN 1529-2908 et 1529-2916, PMID 18425106, PMCID PMC2669298, DOI 10.1038/ni1581, lire en ligne, consulté le )
  35. (en) Hisashi Arase, Tadahiro Suenaga, Noriko Arase et Yoshimitsu Kimura, « Negative Regulation of Expression and Function of FcγRIII by CD3ζ in Murine NK Cells », The Journal of Immunology, vol. 166, no 1,‎ , p. 21–25 (ISSN 0022-1767 et 1550-6606, DOI 10.4049/jimmunol.166.1.21, lire en ligne, consulté le )
  36. Raffaella Augugliaro, Silvia Parolini, Roberta Castriconi et Emanuela Marcenaro, « Selective cross-talk among natural cytotoxicity receptors in human natural killer cells », European Journal of Immunology, vol. 33, no 5,‎ , p. 1235–1241 (DOI 10.1002/eji.200323896, lire en ligne, consulté le )
  37. (en) Rebecca M. May, Mariko Okumura, Chin-Jung Hsu et Hamid Bassiri, « Murine natural killer immunoreceptors use distinct proximal signaling complexes to direct cell function », Blood, vol. 121, no 16,‎ , p. 3135–3146 (ISSN 0006-4971 et 1528-0020, PMID 23407547, PMCID PMC3630829, DOI 10.1182/blood-2012-12-474361, lire en ligne, consulté le )
  38. (en) David B. Rosen, Manabu Araki, Jessica A. Hamerman et Taian Chen, « A Structural Basis for the Association of DAP12 with Mouse, but Not Human, NKG2D », The Journal of Immunology, vol. 173, no 4,‎ , p. 2470–2478 (ISSN 0022-1767 et 1550-6606, DOI 10.4049/jimmunol.173.4.2470, lire en ligne, consulté le )
  39. (en) Alejandro López-Soto, Leticia Huergo-Zapico, Andrea Acebes-Huerta et Mónica Villa-Alvarez, « NKG2D signaling in cancer immunosurveillance: NKG2D signaling », International Journal of Cancer, vol. 136, no 8,‎ , p. 1741–1750 (DOI 10.1002/ijc.28775, lire en ligne, consulté le )
  40. Smith KM, Wu J, Bakker AB, Phillips JH, Lanier LL. Ly-49D and Ly-49H associate with mouse DAP12 and form activating receptors. J Immunol (1998) 161:7–10.
  41. (en) Mark T. Orr, Joseph C. Sun, David G.T. Hesslein et Hisashi Arase, « Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection », Journal of Experimental Medicine, vol. 206, no 4,‎ , p. 807–817 (ISSN 1540-9538 et 0022-1007, PMID 19332875, PMCID PMC2715124, DOI 10.1084/jem.20090168, lire en ligne, consulté le )
  42. Yuxia Zhang et Bing Huang, « The Development and Diversity of ILCs, NK Cells and Their Relevance in Health and Diseases », dans Regulation of Inflammatory Signaling in Health and Disease, vol. 1024, Springer Singapore, (ISBN 978-981-10-5986-5, DOI 10.1007/978-981-10-5987-2_11, lire en ligne), p. 225–244
  43. Helena Stabile, Cinzia Fionda, Angela Gismondi et Angela Santoni, « Role of Distinct Natural Killer Cell Subsets in Anticancer Response », Frontiers in Immunology, vol. 8,‎ (ISSN 1664-3224, PMID 28360915, PMCID PMC5352654, DOI 10.3389/fimmu.2017.00293, lire en ligne, consulté le )
  44. (en) Mark J. Smyth, Erika Cretney, Janice M. Kelly et Jennifer A. Westwood, « Activation of NK cell cytotoxicity », Molecular Immunology, vol. 42, no 4,‎ , p. 501–510 (DOI 10.1016/j.molimm.2004.07.034, lire en ligne, consulté le )
  45. (en) Cyril Fauriat, Eric O. Long, Hans-Gustaf Ljunggren et Yenan T. Bryceson, « Regulation of human NK-cell cytokine and chemokine production by target cell recognition », Blood, vol. 115, no 11,‎ , p. 2167–2176 (ISSN 0006-4971 et 1528-0020, PMID 19965656, PMCID PMC2844017, DOI 10.1182/blood-2009-08-238469, lire en ligne, consulté le )
  46. (en) Bailey E. Freeman, Hans-Peter Raué, Ann B. Hill et Mark K. Slifka, « Cytokine-Mediated Activation of NK Cells during Viral Infection », Journal of Virology, vol. 89, no 15,‎ , p. 7922–7931 (ISSN 0022-538X et 1098-5514, PMID 25995253, PMCID PMC4505636, DOI 10.1128/JVI.00199-15, lire en ligne, consulté le )
  47. Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. (1998). Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188: 2375–2380
  48. d'après Mandelboim O et al., 2001
  49. Hershkovitz O et al.2009
  50. Samuel CE et al. 2001
  51. Nguyen KB et al, 2002
  52. Banchereau J et al., 1998
  53. (en) Anthony R. French et Megan A. Cooper, « Immunology of Cytokine Storm Syndromes: Natural Killer Cells », dans Cytokine Storm Syndrome, Springer International Publishing, (ISBN 978-3-030-22094-5, DOI 10.1007/978-3-030-22094-5_10, lire en ligne), p. 163–181
  54. La Recherche n° 542, décembre 2018, p. 46.
  55. Mitch Leslie New cancer-fighting cells enter trials, 2018
  56. Rohtesh S. Mehta, Katayoun Rezvani, Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer, 2018
  57. Li Y, Hermanson DL, Moriarity BS, Kaufman DS, Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity, 2018
  58. Gineau L, Cognet C, Kara N et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency, J Clin Invest, 2012;122:821–832
  59. Mace EM, Hsu AP, Monaco-Shawver L et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset, Blood, 2013;121:2669–2677
  60. Hanna S, Béziat V, Jouanguy E, Casanova JL, Etzioni A, A homozygous mutation of RTEL1 in a child presenting with an apparently isolated natural killer cell deficiency, J Allergy Clin Immunol, 2015;136:1113–1114
  61. Grier JT, Forbes LR, Monaco-Shawver L et al. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity, J Clin Invest, 2012;122:3769–3780
  62. Mace EM, Bigley V, Gunesch JT et al. Biallelic mutations in IRF8 impair human NK cell maturation and function, J Clin Investig, 2017;127:306-320

Voir aussi

Bibliographie

  • Richard A. Goldsby, Thomas J. Kindt, Barbara A. Osborne et Serge Weinman. Immunologie : le cours de Janis Kuby. Dunod, Paris, 2003. (ISBN 2-10-007396-6)

Article connexe