Récepteur antigénique chimérique

Un article de Wikipédia, l'encyclopédie libre.
Sauter à la navigation Sauter à la recherche
Page d'aide sur l'homonymie Pour les articles homonymes, voir Car.

Un récepteur antigénique chimérique (de l'anglais chimeric antigen receptor ou CAR) est une molécule créée en laboratoire pour permettre aux cellules immunitaires de reconnaître et de cibler des protéines présentes à la surface d'autres cellules, par exemple présentes à la surface de cellules tumorales[1]. Les CAR font partie d'une série d'avancées prometteuses dans la lutte contre le cancer grâce au développement de thérapies adoptives de transfert de cellules[1],[2].

Des lymphocytes du patient sont prélevés puis génétiquement modifiées pour leur faire exprimer un récepteur CAR spécifique d'un antigène exprimé par les cellules tumorales du patient. Les cellules immunitaires peuvent alors reconnaître et tuer les cellules cancéreuses et sont réintroduites dans le patient. La création de lymphocytes universels pouvant être administrés à un grand nombre de patients est également explorée et a déjà permis de soigner avec succès des patients[3].

Historique[modifier | modifier le code]

Le concept de traitement génétique par lymphocytes T a été développé dans les années 1980 par Eshhar et ses collègues. En 1989, Eshhar et ses collègues avaient créé les premières cellules T CAR fonctionnelles.

Concept[modifier | modifier le code]

CAR de première génération[modifier | modifier le code]

Le récepteur des lymphocytes T (TCR) reconnaît l'antigène ciblé sous la forme d'un court peptide présenté par les molécules du Complexe Majeur d'Histocompatibilité alors que le récepteur des lymphocytes B, comme les anticorps, reconnaît l'antigène natif. Il est possible de produire un récepteur hybride comprenant la partie extracellulaire du récepteur des lymphocytes B fusionnée génétiquement à la partie intracellulaire du récepteur de lymphocytes T. Plus précisément, on fusionne le module de reconnaissance du lymphocyte B (en général sous la forme d'un sc-FV, single chain variable fragment) avec le domaine activateur du lymphocyte T, c'est-à-dire la chaine CD3ζ. Le récepteur ainsi obtenu (CAR de première génération), une fois exprimé dans un lymphocyte T, redirige ce dernier contre des cellules exprimant l'antigène ciblé par le module de reconnaissance[4],[5],[6]. Cependant, la seule reconnaissance de l'antigène par le lymphocyte T ne suffit pas à produire une activation complète, et peut même rendre le lymphocyte T anergique[7]. De fait, les premiers essais cliniques avec des CAR de première génération furent plutôt décevants.

CAR de deuxième génération[modifier | modifier le code]

C'est probablement à D. Campana et ses collègues que revient l'idée d'ajouter au CAR de première génération un module de costimulation, par exemple une séquence dérivée des molécules CD28 ou 4-1BB[8]. Lorsque les lymphocytes exprimant un CAR de deuxième génération rencontrent l'antigène ciblé par le CAR à la surface d'une cellule tumorale, ils reçoivent simultanément le signal antigénique (signal 1 transmis par la séquence dérivée du CD3ζ) et le signal de costimulation (signal 2). Les premiers succès thérapeutiques furent observés dès 2011 avec les CAR de deuxième génération développés par les équipes de C. June[9], M. Sadelain[10] et S. Rosenberg[11].

Place des CAR dans les immunothérapies adoptives[modifier | modifier le code]

C'est S. Rosenberg et son équipe qui, dès 1988, traita des patients atteints de mélanome avec des lymphocytes T activés[12]. Dans la version la plus simple de cette thérapie cellulaire adoptive, les lymphocytes qui infiltrent la tumeur du patient (et qui donc sont enrichis en lymphocytes dirigés contre les antigènes exprimés par les cellules tumorales) sont prélevés puis amplifiés in vitro avant d'être réinjectés au patient. Ce type d'approche a certes donné des résultats cliniques prometteurs et permis de démontrer la faisabilité d'utiliser des lymphocytes pour combattre les cancers. Cependant, seule une fraction des lymphocytes issus de la tumeurs sont réellement dirigés contre les cellules tumorales. De plus, l'étape d'amplification in vitro est particulièrement longue et difficile car il faut injecter des dizaines de milliards, voire des centaines de milliards de lymphocytes pour obtenir une certaine efficacité clinique[13]. Enfin, les lymphocytes injectés ne persistent que très transitoirement chez le patient et de multiples injections sont nécessaires.

C'est pour palier ces difficultés que les CAR ont été développés. En effet, l'expression par les lymphocytes modifiés génétiquement du CAR (de première ou de deuxième génération) assure la spécificité vis-à-vis de l'antigène tumoral. Surtout, l'addition du module de costimulation sur les CAR de deuxième génération permet une prolifération des lymphocytes in vivo, c'est-à-dire après leur injection au patient. Certaines études ont reporté des amplifications in vivo d'un facteur > 1000[14],[15]. Il suffit alors d'injecter au patient quelques dizaines ou centaines de millions de lymphocytes exprimant le CAR, ce qui est parfaitement faisable. Enfin, comme ils prolifèrent in vivo, les lymphocytes modifiés persistent pendant des semaines, voire des mois.

Traitements[modifier | modifier le code]

Les premiers résultats cliniques positifs ont été obtenus dans le traitement de leucémies ou de lymphomes à cellules B en ciblant l'antigène CD19 exprimé par les lymphocytes B et les cellules tumorales. Depuis de nombreux autres antigènes exprimés par les cellules tumorales ont été testés et sont en développement. Les deux tableaux ci-dessous citent quelques-uns des antigènes ciblés testés actuellement en clinique et les cancers correspondants[16].

CAR testés dans des hémopathies malignes
Antigène ciblé Indications
CD19 Hémopathies à cellules B
BCMA Myélome multiple
CD123 Leucémie aiguë myéloblastique

Syndrome myéloïde dysplasique

CD20 Hémopathies à cellules B
CD22 Hémopathies à cellules B
CD38 Myélome multiple
LeY Leucémie aiguë myéloblastique

Syndrome myéloïde dysplasique

ROR1 Leucémies ROR1+
CAR testés dans des tumeurs solides
Antigène ciblé Indications
c-MET Mélanome, sein
CD133 Foie, pancréas, cerveau
CD171 Neuroblastome
CD70 pancréas, rein, sein
CEA foie, poumon, colo-rectal, estomac, pancréas
EGFR-VIII Glioblastome
EpCAM foie, estomac, nasopharynx, sein, colon, œsophage, pancréas
EphA2 glioblastome
FAP mésothéliome
GD2 neuroblastome, glioblastome, sarcomes, ostéosarcome, mélanome
GPC3 foie, poumon
HER2 sein, ovaire, poumon, glioblastome, sarcomes
IL-13Ra2 glioblastome
Mésothéline col de l'utérus, pancréas, ovaire, poumon
MUC1 foie, poumon, pancréas, sein, glioblastome, estomac, colo-rectal
PSCA pancréas
PSMA prostate, vessie
ROR1 cancers ROR1+
VEGFR2 mélanome, rein

Le premier traitement à base de CAR a été approuvé par la FDA américaine en août 2017 pour le traitement de leucémie chez l'enfant et les jeunes adultes[17] et en octobre de la même année pour le traitement de certains lymphomes non hodgkiniens à grandes cellules B[18]. Lors des essais cliniques de traitement de leucémies aiguës lymphoblastiques 79 % des patients traités avaient survécu 12 mois après traitement. Le coût du traitement appelé Kymriah s'élève à 475 000 dollars américains et n'est facturé qu'en cas de réussite du traitement[17].

Futures directions[modifier | modifier le code]

CAR universels[modifier | modifier le code]

Si l'on veut que davantage de patients susceptibles de bénéficier de cette approche puissent y avoir accès, il convient d'en simplifier la production et d'en réduire le coût. Deux sociétés françaises, Servier et Cellectis, se sont associées pour développer des traitements utilisant comme cellules de départ non plus les lymphocytes du patient lui-même (thérapie autologue) mais des lymphocytes de donneurs sains (thérapie allogénique). Cependant, les lymphocytes de donneurs sains contiennent une sous-population susceptible de reconnaitre les molécules du Complexe Majeur d'Histocompatibilité du patient et donc de provoquer une réaction du greffon contre l'hôte (en quelque sorte, un rejet de greffe à l'envers). Pour prévenir cette réaction, en général mortelle, le récepteur endogène des lymphocytes de donneurs sains est génétiquement inactivé en utilisant la technologie des TALEN. Les lymphocytes, délétés de leur récepteur endogène mais exprimant un récepteur CAR sont ensuite injectés au patient. La même préparation peut être utilisée pour tous les patients dont la tumeur exprime l'antigène ciblé par le CAR. Cela constitue un progrès très significatif puisque, dans le cas d'une thérapie autologue, un lot spécifique de lymphocytes doit être préparé pour chaque patient. Cette approche permet aussi des traiter des patients aplasiques, c'est-à-dire dont le nombre de lymphocytes est trop faible en raison des multiples traitements préalables[19].

D'autres stratégies, comme l'utilisation de cellules NK (dépourvues d'activité alloréactive) ou d'inactivation de l'expression surfacique du TCR endogène par sur-expression d'une chaine CD3 tronquée semblent également prometteuses[20].

Cellules CAR T blindées[modifier | modifier le code]

Les cellules CAR T sont plus efficaces sur les tumeurs liquides et ne se sont pas montrées autant prometteuses dans le traitement des tumeurs solides. Le cancer de l'ovaire est l'un des cancer les plus meurtrier chez la femme en raison du diagnostic tardif chez la plupart des cas (environ 70 %) à un stade avancé. Parmi les personnes diagnostiquées, environ 30 % d'entre elles survivent plus de cinq ans. Le cancer de l'ovaire est difficile à traiter parce qu'il s'agit d'une tumeur solide avec un micro-environnement qui supprime les cellules T transférées adoptivement. Le micro-environnement hostile de la tumeur solide est également composé de cellules suppressives myéloïdes (MDSC) et de macrophages associés à la tumeur (TAM)[21]. Les TAM et les MDSC favorisent certains aspects de la croissance et du développement des tumeurs[22]. Le micro-environnement tumoral est également composé de leucocytes vasculaires (VLC) qui favorisent la progression de la tumeur solide[23]. Tous ces composants du micro-environnement de la tumeur agissent pour supprimer les cellules T.

La cellule CAR T « blindée » est conçue pour sécréter de puissantes cytokines telles que l'interleukine 12 (IL-12) ainsi que pour exprimer des ligands captifs ou solubles sur sa membrane afin d'améliorer l'efficacité de la cellule CAR T. La sécrétion de l'IL-12 est prometteuse car il s'agit d'une cytokine pro-inflammatoire connue pour sa capacité à améliorer les capacités cytotoxiques des cellules CD8+, à engager et recruter des macrophages pour prévenir la fuite des cellules tumorales antigène[24]. Les lymphocytes T CD19 CAR sécrétant l'IL-12 pourraient éradiquer les lymphomes établis chez la souris sans qu'il soit nécessaire de procéder à un pré-conditionnement par induction de l'immunité de l'hôte[25]. Un récent essai clinique de phase II a été mené chez des patientes atteintes d'un cancer de l'ovaire où on leur a administré de l'IL-12. Ce traitement a permis de stabiliser la maladie dans 50 % de la cohorte[26].

Références[modifier | modifier le code]

  1. a et b « CAR Récepteur antigénique chimérique | cellectis », sur www.cellectis.com (consulté le 28 avril 2017)
  2. M. Pule, H. Finney et A. Lawson, « Artificial T-cell receptors », Cytotherapy, vol. 5, no 3,‎ , p. 211–226 (ISSN 1465-3249, PMID 12850789, DOI 10.1080/14653240310001488, lire en ligne)
  3. Olivia Wilkins, Allison M. Keeler et Terence R. Flotte, « CAR T-Cell Therapy: Progress and Prospects », Human Gene Therapy Methods, vol. 28, no 2,‎ , p. 61–66 (ISSN 1946-6536, DOI 10.1089/hgtb.2016.153, lire en ligne)
  4. Y. Kuwana, Y. Asakura, N. Utsunomiya et M. Nakanishi, « Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions », Biochemical and Biophysical Research Communications, vol. 149, no 3,‎ , p. 960–968 (ISSN 0006-291X, PMID 3122749, lire en ligne)
  5. G Gross, T Waks et Z Eshhar, « Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. », Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no 24,‎ , p. 10024–10028 (ISSN 0027-8424, PMID 2513569, lire en ligne)
  6. « [Frontiers in Bioscience 4, d386-393, April 1, 1999] », sur www.bioscience.org (consulté le 8 mai 2018)
  7. R. H. Schwartz, D. L. Mueller, M. K. Jenkins et H. Quill, « T-cell clonal anergy », Cold Spring Harbor Symposia on Quantitative Biology, vol. 54 Pt 2,‎ , p. 605–610 (ISSN 0091-7451, PMID 2534840, lire en ligne)
  8. Michael C. Milone, Jonathan D. Fish, Carmine Carpenito et Richard G. Carroll, « Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo », Molecular Therapy: the Journal of the American Society of Gene Therapy, vol. 17, no 8,‎ , p. 1453–1464 (ISSN 1525-0016, PMID 19384291, PMCID PMC2805264, DOI 10.1038/mt.2009.83, lire en ligne)
  9. David L. Porter, Bruce L. Levine, Michael Kalos et Adam Bagg, « Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia », The New England Journal of Medicine, vol. 365, no 8,‎ , p. 725–733 (ISSN 0028-4793, PMID 21830940, PMCID PMC3387277, DOI 10.1056/NEJMoa1103849, lire en ligne)
  10. Renier Brentjens, Marco L Davila, Isabelle Riviere et Jae Park, « CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia », Science translational medicine, vol. 5, no 177,‎ , p. 177ra38 (ISSN 1946-6234, PMID 23515080, PMCID PMC3742551, DOI 10.1126/scitranslmed.3005930, lire en ligne)
  11. James N. Kochenderfer, Wyndham H. Wilson, John E. Janik et Mark E. Dudley, « Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19 », Blood, vol. 116, no 20,‎ , p. 4099–4102 (ISSN 0006-4971, PMID 20668228, PMCID PMC2993617, DOI 10.1182/blood-2010-04-281931, lire en ligne)
  12. S. A. Rosenberg, B. S. Packard, P. M. Aebersold et D. Solomon, « Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report », The New England Journal of Medicine, vol. 319, no 25,‎ , p. 1676–1680 (ISSN 0028-4793, PMID 3264384, DOI 10.1056/NEJM198812223192527, lire en ligne)
  13. Stephanie L. Goff, Mark E. Dudley, Deborah E. Citrin et Robert P. Somerville, « Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic Melanoma », Journal of Clinical Oncology, vol. 34, no 20,‎ , p. 2389–2397 (ISSN 0732-183X, PMID 27217459, PMCID PMC4981979, DOI 10.1200/JCO.2016.66.7220, lire en ligne)
  14. David L. Porter, Wei-Ting Hwang, Noelle V. Frey et Simon F. Lacey, « Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia », Science translational medicine, vol. 7, no 303,‎ , p. 303ra139 (ISSN 1946-6234, PMID 26333935, PMCID PMC5909068, DOI 10.1126/scitranslmed.aac5415, lire en ligne)
  15. Barbara Savoldo, Carlos Almeida Ramos, Enli Liu et Martha P. Mims, « CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients », The Journal of Clinical Investigation, vol. 121, no 5,‎ , p. 1822–1826 (ISSN 0021-9738, PMID 21540550, PMCID PMC3083795, DOI 10.1172/JCI46110, lire en ligne)
  16. Modèle {{Lien web}} : paramètre « titre » manquant. https://clinicaltrials.gov/
  17. a et b (en) Emily Mullin, « A pioneering gene therapy for leukemia has arrived in the U.S. », MIT Technology Review,‎ (lire en ligne)
  18. (en) Office of the Commissioner, « Press Announcements - FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma », sur www.fda.gov (consulté le 8 mai 2018)
  19. (en) Waseem Qasim, Hong Zhan, Sujith Samarasinghe et Stuart Adams, « Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells », Science Translational Medicine, vol. 9, no 374,‎ , eaaj2013 (ISSN 1946-6234 et 1946-6242, PMID 28123068, DOI 10.1126/scitranslmed.aaj2013, lire en ligne)
  20. Takahiro Kamiya, Desmond Wong, Yi Tian Png et Dario Campana, « A novel method to generate T-cell receptor–deficient chimeric antigen receptor T cells », Blood Advances, vol. 2, no 5,‎ , p. 517–528 (ISSN 2473-9529, PMID 29507075, PMCID PMC5851418, DOI 10.1182/bloodadvances.2017012823, lire en ligne)
  21. Jon G. Quatromoni et Evgeniy Eruslanov, « Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer », American Journal of Translational Research, vol. 4, no 4,‎ , p. 376–389 (ISSN 1943-8141, PMID 23145206, PMCID PMC3493031, lire en ligne)
  22. Pratima Sinha, Virginia K. Clements, Stephanie K. Bunt et Steven M. Albelda, « Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response », Journal of Immunology (Baltimore, Md.: 1950), vol. 179, no 2,‎ , p. 977–983 (ISSN 0022-1767, PMID 17617589, lire en ligne)
  23. S. Peter Bak, Anselmo Alonso, Mary Jo Turk et Brent Berwin, « Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression », Molecular Immunology, vol. 46, no 2,‎ , p. 258–268 (ISSN 0161-5890, PMID 18824264, PMCID PMC2613193, DOI 10.1016/j.molimm.2008.08.266, lire en ligne)
  24. Markus Chmielewski, Caroline Kopecky, Andreas A. Hombach et Hinrich Abken, « IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression », Cancer Research, vol. 71, no 17,‎ , p. 5697–5706 (ISSN 1538-7445, PMID 21742772, DOI 10.1158/0008-5472.CAN-11-0103, lire en ligne)
  25. Gray Kueberuwa, Milena Kalaitsidou, Eleanor Cheadle et Robert Edward Hawkins, « CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity », Molecular Therapy Oncolytics, vol. 8,‎ , p. 41–51 (ISSN 2372-7705, PMID 29367945, PMCID PMC5772011, DOI 10.1016/j.omto.2017.12.003, lire en ligne)
  26. (en) Oladapo O. Yeku, Terence J. Purdon, Mythili Koneru et David Spriggs, « Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment », Scientific Reports, vol. 7, no 1,‎ (ISSN 2045-2322, PMID 28874817, PMCID PMC5585170, DOI 10.1038/s41598-017-10940-8, lire en ligne)