Aller au contenu

Droite réelle achevée

Un article de Wikipédia, l'encyclopédie libre.
Ceci est une version archivée de cette page, en date du 21 janvier 2022 à 19:49 et modifiée en dernier par Vega (discuter | contributions). Elle peut contenir des erreurs, des inexactitudes ou des contenus vandalisés non présents dans la version actuelle.

En mathématiques, la droite réelle achevée désigne l'ensemble ordonné constitué des nombres réels auxquels sont adjoints deux éléments supplémentaires : un plus grand élément, noté +∞ et un plus petit élément, noté –∞[1]. Elle est notée [–∞, +∞], ℝ ∪ {–∞, +∞} ou (la barre symbolise ici l'adhérence car dans la droite réelle achevée munie de la topologie de l'ordre, ℝ est dense).

Cet ensemble est très utile en analyse et particulièrement dans certaines théories de l'intégration[2].

Propriétés

Opérations

L'addition et la multiplication, définies sur l'ensemble des réels, sont partiellement étendues comme suit à la droite achevée[1].

Addition

Pour tout x ∈ ]–∞, +∞], x + (+∞) = +∞.

Pour tout x ∈ [–∞, +∞[, x + (–∞) = –∞.

Multiplication

Pour tout x :

  • x × (+∞) = +∞ si x > 0 et –∞ si x < 0 ;
  • x × (–∞) = –∞ si x > 0 et +∞ si x < 0 ;

Opérations indéterminées

Il est impossible de munir d'une structure de groupe dont (ℝ, +) soit un sous-groupe[réf. souhaitée], parce qu'on ne rajoute pas suffisamment d'éléments (voir « Indice d'un sous-groupe »). On préfère donc ne pas définir (+∞) + (–∞).

De même, dans le cadre des calculs de limites, on ne donne aucun sens aux produits ou quotients par 0 de +∞ ou –∞. Cependant, en théorie de la mesure et en analyse convexe, on adopte souvent la convention .

Récapitulatif

L'addition et la multiplication partiellement étendues à la droite réelle achevée sont résumées dans les tableaux suivants, les cases grisées représentant les formes indéterminées :

Relation d'ordre

L'ensemble est muni d'une relation d'ordre, notée ≤, qui étend la relation d'ordre usuelle sur ℝ. Cette relation est telle que –∞ est le plus petit élément de et +∞ le plus grand élément[1].

Ainsi, si , avec au sens de la relation d'ordre usuelle sur ℝ, on a :

Comme celle sur ℝ, la relation d'ordre usuelle sur est totale.

La droite réelle achevée est un treillis complet, c'est-à-dire que toute partie de cet ensemble admet une borne supérieure et une borne inférieure[1], y compris l'ensemble vide ∅ (+∞ est sa borne inférieure et –∞ sa borne supérieure, comme expliqué dans le § « Exemples » de l'article sur les bornes supérieure et inférieure).

Métriques et topologie

L'ordre sur induit une topologie de l'ordre : une base d'ouverts est constituée des intervalles de la forme ]a, +∞] ou [–∞, b[ ou ]a, b[ avec a et b réels. La topologie induite sur ℝ par cette topologie sur est donc la topologie de l'ordre de ℝ, c'est-à-dire sa topologie usuelle[1]. Autrement dit : les voisinages dans d'un réel x sont les mêmes que ceux définis par la topologie usuelle sur ℝ, augmentés éventuellement de –∞ et/ou de +∞.

Tout point de possède une base de voisinages dénombrable. Par exemple :

  • les intervalles ]n, +∞] avec n entier (ou entier positif) forment une base de voisinages de +∞ ;
  • les intervalles [–∞, n[ avec n entier (ou entier négatif) forment une base de voisinages de –∞ ;
  • pour tout réel x, les intervalles ]x – 1/n, x + 1/n[ avec n entier strictement positif forment une base de voisinages de x.

L'espace topologique est même métrisable, mais aucune distance ne s'impose naturellement plus qu'une autre ; en particulier, il n'existe sur aucune distance continue qui soit une extension de la distance usuelle sur ℝ.

Parmi les distances induisant la topologie de , on peut citer :

  • , en comptant
  • , en comptant

En effet, l'application arctan (respectivement tanh) est un isomorphisme d'ensembles ordonnés de ℝ dans ]–π/2, π/2[ (resp. dans ]–1, 1[), donc[1] se prolonge en un isomorphisme d'ensembles ordonnés de dans [–π/2, π/2] (resp. dans [–1, 1]), qui est par conséquent un homéomorphisme entre les topologies associées à ces ordres.

Ces homéomorphismes montrent aussi que est compact[1].

Notes et références

  1. a b c d e f et g N. Bourbaki, Éléments de mathématique, livre III : Topologie générale [détail des éditions], chap. IV, § 4, p. IV.13-17.
  2. Cf. par exemple N. Bourbaki, Éléments de mathématique, livre VI : Intégration, chap. IV, § 1 et 5.

Voir aussi

Compactifié d'Alexandroff